

Trends in Supercomputing and Evolution of the San Diego Supercomputer Center:

Jan 11, 2017 Richard Moore Recently retired as UCSD/SDSC Deputy Director

SAN DIEGO SUPERCOMPUTER CENTER

Outline

- Introduce myself
- What puts the super in supercomputing?
- Trends in supercomputing
- Evolution of San Diego Supercomputer Center

My background

- Undergrad at U Michigan (Applied Math, Astronomy)
 - And wine, women and jazz
- PhD at U Arizona (Optical Astronomy)
 - Optical polarization of quasars, and unusual features of the small class of highly-polarized quasars and BL Lacertae objects
 - => Quasars are driven by black-hole accretion; relativistic jets likely to cause extreme characteristics in a subset of quasars
- Postdoc at Caltech (Radio Astronomy)
 - Optical polarimetry at Palomar 200"
 - Deployed K-band maser receiver (JPL) at Owens Valley Radio Obs
 - Very Long Baseline Interferometry (VLBI) imaging
 - Superluminal acceleration (relativistic jets)

First career: Observational astronomer

SDSC SAN DIEGO SUPERCOMPUTER CENTER

Second career: Aerospace

- Aerospace Corporation, El Segundo
 - FFRDC for Air Force Space Systems LA
- Photon Research Associates, San Diego (early SAIC spin-off, now Raytheon division)
 - Physics-based modeling/simulation of targets and backgrounds (primarily IR, some radar and visible), sensors and digital processing
 - Missile warning systems, ballistic missile defense, other classified systems

Third career: Supercomputing

- Joined SDSC in 2002
- Held various leadership roles
 thru several transitions
 - Final steps of GA -> UCSD transition
 - NSF's disaggregation of center funding to individual competitions
 - Increased engagement w/ UCSD and UC
- Retired mid-2015

Outline

- Introduce myself
- What puts the super in supercomputing?
- Trends in supercomputing
- Evolution of San Diego Supercomputer Center

What puts the super in supercomputing?

- Ability to apply large computational capability to a single problem
- Supercomputers are not just large computing installations (capacity)
 - A few internet companies far dominate the computing landscape in terms of capacity; ~25% of Intel's chips go to four web companies.
- You can always do capacity computing on a capability machine, but you can't do capability computing on a capacity machine
- In early Cray/CDC days, the super part was very fast processors and vector processing
- But clock frequencies maxed out (energy limits) and economics now drives supercomputing to rely largely on commodity components

Parallelism is now the super in supercomputing

- Supercomputers have high bandwidth/low latency interconnects that pass data between nodes so that many nodes work in parallel on same problem
 - Current interconnects: ~+100 Gbps bandwidth, ~100 ns latency per hop
 - Interconnect network adds ~10-30% of cost of system
 - Software protocols for passing data between nodes
- Common interconnects
 - Ethernet (latencies relatively high ... standard for 'web farms')
 - InfiniBand (open standard, but only vendor left is Mellanox)
 - Intel OmniPath recent 'interconnect in the chip set'
 - Proprietary networks by Cray, IBM, Japanese and Chinese
- Nodes connected via node interface cards and switches
 - Scaling switches to large numbers of 'ports' is an N² challenge
 - Largest switches (IB EDR or 100G Ethernet) ~500 ports and a LOT of bandwidth in a single box (100+ Tbps).
 - Can build multi-level switch architectures, but more hops (i.e. latency) and more ports for inter-level connections

Hardware is just the beginning ... making it work efficiently is harder

- Computational efficiency = flops achieved / theoretical peak flops
- How much time is spent moving data vs doing calculations?
 - Memory bandwidth/latency are key and are lagging behind flops
 - Floating-point registers often wait for the data to operate on
- 'Standard' benchmark for HPC systems ~50-80% efficiency
- But many scientific applications have single-digit efficiencies
 - Scaling algorithms up to larger numbers of cores/nodes is hard, and memory access
- Need to decompose scientific problems and develop algorithms that map well onto core/node/interconnect/storage architecture
 - Architectures change frequently
 - 'Co-design' is the buzzword to design algorithms/architecture together

Outline

- Introduce myself
- What puts the super in supercomputing?
- Trends in supercomputing
- Evolution of San Diego Supercomputer Center

Emerging processor technologies

- Intel dominates x86 CPU chips and keeps increasing cores/chip (also AMD, IBM Power, etc.)
 - Balance with memory bandwidth is the challenge
- "Accelerators" (high flops/\$ and flops/watt)
 - Intel Phi co-processor (~64 cores, 4 threads/core)
 - Graphics processors (e.g. NVIDIA)
 - Field-programmable gate arrays (FPGAs)
 - Memory quantity/access/speed is a challenge with most accelerators
- ARM processors?
 - Not yet a major player, but strong power and economics drivers

System 'balance' changing dramatically: Flops are cheap, especially w/ multi-core chips and accelerators

From John Macalpin, UT/TACC

For really large systems (e.g. exascale), other issues become limiting factors

- System reliability can all components work long enough to complete the calculation?
 - Fault tolerance against many forms of errors
 - Checkpointing (copying system state) at reasonable speeds
- Energy consumption
 - Largest systems now >10MW
 - DOE set ~20MW requirement for 'exascale' system (~\$20-50M/yr utilities)
- Fewer and fewer applications are making effective use of entire system

Current "Top 10" Supercomputers (www.top500.org, Nov 2016)

Organization	Name	Peak (PF)	Benchmark (PF)	Vendor/ Network/ Accelerator	Cores (million)	Power (MW)
National Supercomputing Center Wuxi	TiahuLight	125.4	93.0	NRCPC/Sunway/Sunway	10.65	15.4
National Supercomputer Center Guangzhou	Tianhe 2	54.9	33.9	NUDT/TH-Express/ Phi	3.12	17.8
Oak Ridge	Titan	27.1	17.6	Cray/Gemini/NVIDIA	0.56	8.3
Livermore	Sequoia	20.1	17.1	IBM/BlueGene/ None	1.56	7.9
NERSC	Cori	27.9	14.0	Cray/Aries/Phi	0.62	3.9
JCAHPC (Japan)	Oakforest	24.9	13.6	Fujitsu/OmniPath/Phi	0.56	2.7
RIKEN (Japan)	'K'	11.3	10.5	Fujitsu/Tofu/None	0.71	12.7
CSCS (Switzerland)	Piz Daint	16.0	9.8	Cray/Aries/NVIDIA	0.21	1.3
Argonne	Mira	10.1	8.6	IBM/BlueGene/None	0.79	3.9
Sandia	Trinity	11.1	8.1	Cray/Aries/None	0.30	4.2

SAN DIEGO SUPERCOMPUTER CENTER

SDS

Supercomputer 'Top500' Performance over time (www.top500.org)

Sum

Performance

SDSC

#1

#500

Top 500 trends

- Accelerator/CP family performance/systems
 - Intel and NVIDIA are battling it out
- Vendors performance/systems
 - Cray is major player in large systems,
 - IBM fading (especially with end of BlueGene series)
 - HP has many of the smaller systems,
 - ... many others
- Countries performance/systems
 - China!

Accelerator family (2006-2016) – Systems/Performance Share (from top500.org)

Vendors (1996-2016) – Systems/Performance Share (from top500.org)

Countries (1994-2016) – Systems/Performance Share (from top500.org)

Outline

- Introduce myself
- What puts the super in supercomputing?
- Trends in supercomputing
- Evolution of San Diego Supercomputer Center

SDSC – A Pioneer in Supercomputing

- Established as a national supercomputer resource center in 1985 by NSF
 - Run by General Atomics rare for NSF
- Became an Organized Research Unit of UC San Diego in 1997
 - Second largest ORU at UCSD
- Grant revenues ~\$20-60M/yr (~\$25M/yr)
 - Full-time employees 100-300 (now ~220)
- >\$1B revenue over lifetime!
- World leader in data-intensive computing and data management

Evolutionary Phases of SDSC

- 1985-1997: NSF national supercomputer center; managed by General Atomics
- 1997-2007: NSF PACI program leadership center; managed by UCSD
 - SDSC led National Partnership for Advanced Computational Infrastructure w/ ~35 universities – supercomputers, technology and applications
- **2008-future:** multi-constituency cyberinfrastructure (CI) center
 - Still NSF national "resource provider"
 - But provides data-intensive CI resources, services, and expertise for campus, state, and nation

In the beginning there was Sid ... submitting an unsolicited proposal to NSF

- "proposal for the development and operation of a highly interactive, useroriented supercomputer facility"
- Cray X-MP + VAX-based user centers at UCSD, SIO, Salk, SDSU,
- User training and consulting

A Cavalcade of Supercomputers

1985 - Cray X-MP

1989 - Cray Y-MP

1993 - Cray C90

1996 - Cray T3E

architectural convergence

1990 – NCUBE 2

1993 – Intel Paragon

1994 – Thinking Machines CM-2

SDSC SAN DIEGO SUPERCOMPUTER CENTER

National Partnership for Advanced Computational Infrastructure (NPACI)

SDSC * U Texas * U. Michigan * Caltech + ~30 other partners

2000: First Academic TeraFlop* Supercomputer IBM Blue Horizon at SDSC

*1 trillion floating point operations per second

2004: Data Star Targeting Data-Intensive HPC Applications

IBM Power4 Data Star 2000 cpu, 17 Tflops GPFS filesystem

 TeraShake virtual earthquake simulation

Amit Chourasia, SDSC Visualization Services

SDSC leveraged its expertise and expanded to include many PI-led labs

caıda

Next Generation Biology Workbench

SIOExplorer

NEESgrid

Groups & Labs 👔

- Advanced Cyberinfrastructure Development Group
- Advanced Query Processing Laboratory
- Applied Network Research
- Bourne Laboratory
- <u>Complex Systems</u>
- Cryoelectron Microscopy and 3D Image Reconstruction
- Cooperative Association for Internet Data Analysis
- Homeland Security
 - Laboratory for Computational Astrophysics
- Laboratory for Environmental and Earth Science
- Molecular Interaction and Crystallography
- Next Generation Tools for Biology
- Oceanography and Biodiversity Research Group

CONVERSATIO

- Pacific Rim Activities
- Performance Modeling and Characterization Laboratory
- Scientific Workflow Automation Technologies Laboratory
- SDSC Education Group
- Spatial Information Systems Laboratory

REGIONAL WORKBENCH CONSORTIUM Collaborative Research, Outreach and Education for Sustainable Development

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

ROADNet

NSF's Big Experiment with 'Grid Computing' (2002 – ~2006)

- SDSC founding member of TeraGrid, together with NCSA, Caltech, and Argonne Nat'l Lab
 - Four HPC sites interconnected @ 40 Gbps (a lot in 2002!)
- Original 'grid' concept evolved to what is now an interconnected collaboration of resource providers

Third Phase for SDSC

- Change of NSF funding model away from 'Center' model led to a revisioning of SDSC
- Continue role as NSF national 'resource provider' - but shorter individually-competed awards
- Continue PI-led labs and projects, with emphasis on data science
- Greater emphasis on integrating with UCSD/UC to provide resources and services of value to local researchers

SDSC building dedication Oct. 2008

Recent/Current HPC Systems at SDSC

- Trestles (2011-2015) 100 TF system by Appro/Cray
 - First NSF system designed for 'the 99%' users w/ modest-scale jobs that can use fast turnaround, + science gateways (easy portal-based interface)
- Gordon (2012-present) 300 TF system Appro/Cray
 - Designed for data-intensive applications
 - First HPC system in the world to incorporate flash memory at-scale in the memory hierarchy (cache RAM flash disk)
- Triton Shared Computing Cluster (2011-present)
 - A shared UCSD/UC resource, with PIs purchasing nodes in shared system
- Comet (2015-present) 2PF system by Dell
 - Continues Trestles themes at larger-scale: modest--scale jobs, capacity, turnaround, gateway-friendly

High-performance computing 'for the 99%'

- Scientific impact occurs through-out the Branscomb pyramid
- Many HPC users just need 'capacity' to do their science

From 2009 data across all NSF systems

Project Pls

Geographical Distribution of National Users of SDSC HPC Systems

During FY2015-16, SDSC's Gordon and Comet

SDSC

- Supported 2,348 unique users around the world (98% in US)
- And delivered 106M and 305M core-hours respectively

Training the Next Generation Workforce

- Have trained hundreds of local professionals in data science "boot camps" over the last 3 years
- Coursera online Big Data Specialization course has over 400,000 registrants in last year!
- Recently inaugurated the "Modern Data Science Academy" in partnership with UC San Diego Extension
- SDSC faculty participate in teaching in the Master of Advanced Studies in Data Science program

Educating Our Youth in STEM

StudentTECH Workshops

• Week long workshops offered during the summer for middle and high school students on a variety of topics, from JAVA programming, 3D printing, skateboard design to underwater robotics and artificial intelligence.

Research Experience for High School Students (REHS)

 8 week summer internship program at SDSC. High school students from the San Diego region are selected to work with a mentor on a research project. At the end of the program, students prepare a scientific posters reflecting on their summer experience and display them at a final celebratory event.

Mentor Assistant Program (MAP)

SAN DIEGO SUPERCOMPUT

 Campus-wide program to engage high school students (11th and 12th graders) in a mentoring relationship with an expert from a wide variety of disciplines, from history, marine science and nanoengineering to pharmacology, reproductive medicine and computer science.

• TeacherTECH Program

• Professional development for K-12 teachers in computer science, data science and the use of technology. Over 1,000 teachers trained to date!

May 06, 2014 | By Jan Zverina

Teen Mentored by UC San Diego Professors Wins \$250,000 in Science Prizes

Research on anti-flu drugs relies on NSF's XSEDE supercomputers

CI Services Initiative: A UC Data Center

Cold Isle Containment in New Datacenter

Hot Isle Containment in Existing Datacenter + Flooring Retrofit Phases 2&3

CRAC VFD Retrofits, New Sensors to Throttle with Load SAN DIEGO SUPERCOMPUTER CENTER

Major Power Expansion

Enabling the Future of Medicine

- New Drug Candidate May Reduce Deficits in Parkinson's Disease
 - UC San Diego-led team uses SDSC Resources to Displace Key Neuron-Destroying Protein
- Promising Drug Leads Identified to Combat Heart Disease
 - UC San Diego-Monash University Team Perform Unprecedented Sampling of Proteins
- Underlying Molecular Networks Suggest New Targets to Combat Brain Cancer
 - SDSC/UCSD Team Uncovers Signaling Links to Glioblastoma Factor
- SDSC Supercomputers, CIPRES Gateway Help Define New "Tree of Life"

Partnering for Science & Public Safety High Performance Wireless Research Network

- In 2011, transitioned HPWREN from an NSF-funded science platform to a sustainable public-private partnership serving science & public safety.
- Played a key role in response to 2003 & 2007 wildfires
- Primary data link for advanced telescopes at Palomar Observatory

Thank You!

