Solar Ship

Peter Lobner, 28 July 2019

Background

Solar Ship Inc. was founded in 2006 by CEO Jay Godsall in Ontario, Canada. The company produces solar-powered, semi-buoyant, hybrid aircraft, aerostats, and large volume hangers (operating bases). The 100% solar-powered, semi-buoyant, hybrid aircraft are designed for transporting heavy loads with excellent short takeoff and landing (STOL) performance, minimal need for ground support, and very low operating cost. These capabilities make the Solar Ship family of hybrid aircraft particularly useful for meeting critical transportation needs in isolated regions of the world that lack basic infrastructure and reliable access to other modes of transportation.

The Solar Ship website is here: https://www.solarship.com

In 2015, the Chinese firm Kuang Chi Science invested in Solar Ship and described the relationship as follows: “Kuang Chi Science and Solar Ship will work together to develop the transportation platform, emergency response station and telecommunication technologies in remote areas. Through this investment, Kuang Chi will be able to target the global market by utilizing Solar Ship’s existing marketing and service network, and integrate Kuang Chi’s near-space technologies into local economy.”

The Kuang Chi Science website is here: http://www.kuangchiscience.com/index.php/solarship#A

In December 2016, Jay Godsall challenged Lockheed Martin to an intercontinental race between the two firm’s airships: a solar-electric powered Wolverine vs. an LMH-1 hybrid airship. Lockheed didn’t accept this challenge. At the Toronto cargo airship conference in March 2019, he proposed an industry-wide challenge to actually demonstrate by July 2021 airships that can move a 3 metric ton (6,614 lb) standard 20 foot intermodal container configured as a mobile medical lab 300 km (186 mi) to a remote location. This capability does not exist in 2019, but would be of great value if it did.
The Solar Ship product line

Solar Ship has developed and flown several sub-scale, semi-buoyant aircraft prototypes, including an 11-meter “Zenship” prototype with an inflated delta wing planform and impressive performance. The original business plan was to develop a family of semi-buoyant aircraft that would be based on a scale-up of the 11-meter prototype. The three larger aircraft in this family were named:

- Caracal
- Wolverine
- Nanuq

For all aircraft in this family, aerostatic lift from helium provides less than half of the lift required for flight. Aerodynamic lift from the inflated fabric wings provides the majority of the lift. These aircraft also could fly when the envelope is filled with air instead of helium, but with little or no cargo.

These electrically-powered airships receive power from a thin-film solar cell array installed on the upper wing surface and from an on-board battery system that provides energy storage. The airship’s on-board electrical system can provide emergency electrical power to users in the field.

A family portrait circa 2016 is shown in the following graphic.

Since 2016, the designs of Caracal, Wolverine and Nanuq have changed significantly, with the latter two departing greatly for their original simple delta planform. In the following sections, we’ll look at the prototypes and the individual models in the Solar Ship family of semi-buoyant aircraft.

The Prototypes

Solar Ship built a range of prototypes as it developed the hybrid aircraft configurations for its production aircraft.

Several prototypes. Source: SustainableSkies.org

Prototype circa 2011. Source: Screenshot from Solar Ship video
The 2011 video, “Solar Ship – Hybrid Aircraft,” provides a look at the 11-meter “Zenship” prototype and the 20-meter Caracal prototype. You can watch that video here:

https://www.youtube.com/watch?v=9OFa_AnHiiY

The 2014 video, “Solar Ship Inc. in Brantford,” provides a look at the Solar Ship facilities after its move to Brantford, Ontario, and a glimpse of the formal test and evaluation (T&E) program for the 20-meter Caracal. You can watch that video here:

https://www.youtube.com/watch?v=yrStvYrMzbk

SOLIDWORKS, by Dassault Systems, is the 3-D software design tool used by Solar Ships to design and optimize their semi-buoyant, hybrid aircraft. You can watch the 2017 video, “Born to Design: Solar Ship - Innovation Takes Flight – SOLIDWORKS,” at the following link:

https://www.youtube.com/watch?v=HGsnSh5pfUU

Using SOLIDWORKS for design of a Solar Ship.
Source: Screenshot from Solar Ship video
Caracal

The original 20-meter Caracal prototype was a refinement of the 11-meter “Zenship” prototype, with various safety and controllability improvements. Its primary mission is to deliver critical cargo into isolated places for disaster relief and medical emergencies. The aircraft files on 100% solar power and it can provide emergency power in the field. Caracal is designed to fly as a drone or piloted on 200 km (124 mile) missions with a 200 kg (441 lb) payload.

In 2014, the 20-meter Caracal prototype, powered by a 60 kW (80 hp) electric motor, demonstrated its extreme STOL capabilities by operating out of a 100 meter (328 feet) soccer field carrying 1.8 metric tons (1,800 kg, 3,968 lb) of cargo.
Two views of the 20-meter Caracal prototype at the factory.
Source: Screenshot from Solar Ship video
The 20-meter Caracal prototype in flight.
Source: SustainableSkies.org

The 20-meter Caracal prototype.
Source: Screenshot from Solar Ship video
Solar Ship’s formal test and evaluation program (T&E) for the 20-meter Caracal found issues that needed fixing in the production version of this aircraft. This process resulted in the next-generation 24-meter Caracal, which retains the same general inflated delta wing planform and is representative of the planned production version.

In September 2016, Solar Ship announced the sale of two Caracal and two Wolverine semi-buoyant hybrid aircraft to Manaf Freighters for disaster relief missions in Africa. These sales are contingent on the respective aircraft receiving certification from Canadian aviation authorities.

Wolverine

The original 50-meter Wolverine design was a scale-up of the 11-meter “Zenship” prototype’s inflated delta wing planform. The Wolverine is designed to deliver a 5,000 kg (11,023 lb) payload over a range of 500 km (311 miles) on solar-electric power. Solar Ship reports that this is six times more than the payload of a turbo-prop powered Cessna Caravan, at less than half the operating cost of a much smaller Cessna 172. Wolverine is designed to carry a standard 20 foot shipping container (a 20 foot equivalent unit, TEU) and can be outfitted with floats for amphibious operations.

In June 2017, Solar Ship Inc. conducted the first demonstration flight for a Wolverine under a program with Defense Research and Development Canada (DRDC), a research agency of the Department of National Defense. Under this program, a Wolverine prototype
based on a scale-up of the Caracal design was tested for a number of capabilities including cargo, long endurance surveillance and reconnaissance, and low speed search and rescue. The original Wolverine design did not pass T&E.

The next-generation Wolverine has a significantly different shape that has passed T&E, though it has not been produced at full scale. Development of the commercial-scale design is in progress.

Nanuq

The original 100-meter Nanuq design was a scale-up of the 11-meter “Zenship” prototype’s inflated delta wing planform. Using solar-electric power alone, the Nanuq is designed to carry more cargo than a four-engine Hercules fixed-wing transport at 10% of the operating cost. This is a future aircraft that is expected to start test and evaluation after the Wolverine program has been completed.
Based on experience with the Wolverine T&E process, the design of Nanuq was changed to a shape that has been scaled from the next-generation Wolverine. T&E completion is expected in 2021, with an in-service date in 2023.