DARPA Project WALRUS

Peter Lobner, Updated 21 December 2020

The Joint Chiefs of Staff (J-4 Mobility Division) began an investigation into the military utility of hybrid airships in 2001. In June 2002, J-4 engaged Naval Air Systems Command (NAVAIR) to support this effort. In response, NAVAIR formed their Advanced Development Program Office (ADPO) – Airship Concepts, which directly supported J-4 and led the Navy’s Hybrid Ultra Large Airship (HULA) program.

HULA program leadership was transferred to the Defense Advanced Research Projects Agency (DARPA) in mid-2003, where it became known as the WALRUS Global Reach Air Vehicle Program, or simply Project WALRUS. DARPA convened an industry day in March 2004 to discuss its proposed WALRUS hybrid heavy-lift airship program with interested industry teams.

Project WALRUS sought to develop new technologies and design concepts for a strategic, heavy-lift, hybrid (semi-buoyant) cargo airship. The goal was to develop a design for an Operational Vehicle (OV) capable of carrying a 500 – 1,000 ton (454 – 907 metric ton) payload 12,000 miles (19,312 km) and delivering an Army fighting unit directly “from fort to fight.”

DARPA acknowledged that some assembly of cargo items may be required at the landing site, but that would be minimized. It was expected that a fighting unit could be fully operational within six hours after landing.
Among the advanced airship technologies of interest to DARPA were:

- Advanced materials for airship structures and envelopes.
- Drag reduction.
- Semi-buoyant hybrid airships that generate the necessary lift from the combined effects of aerostatic lift from helium, vectored thrust from propulsion systems, and aerodynamic lift from wings and fuselage during forward flight.
- Innovative lift and buoyancy control concepts that did not rely on off-board ballast, other than ambient air. Here the goal was to be able to discharge heavy loads at a remote landing site without having to take on compensating ballast in order to maintain control of the unloaded airship.
- Operate without significant ground infrastructure.
- Land in unimproved sites with rough ground and obstacles up to five feet tall (i.e., bushes, boulders).
- Electrostatic atmospheric ion propulsion.

WALRUS technologies of interest. Source: DARPA
While the WALRUS OV initially was being developed for strategic airlift, it was adaptable for other missions, such as:

- Theater (shorter range) airlift
- Sea-based airlift
- Long-duration intelligence and communications missions

WALRUS “fort to fight” deployment capability. Source: DARPA

WALRUS integration with other military airlift capabilities. Source: DARPA
Relative scale of hybrid airships (similar to an ATG SkyCat) and USAF cargo aircraft sized for various load capacities.
Source: DoD (2012)

Relative scale of a 1,000 ton hybrid airship, an aircraft carrier, a submarine, the Eiffel Tower and a Boeing 747. Source: DARPA
Here are some early concepts drawings of Project WALRUS airships.

Source: DARPA

Source: http://www.combatreform.org/
Project WALRUS would have allowed the Army to implement a "10-30-30" doctrine, in which Army units could be deployed to a distant theater within 10 days, with the goal of defeating an enemy within 30
days, and then being ready for a follow-on deployment within another 30 days. The WALRUS program was intended to support this strategy, while delivering operational and maintenance cost savings relative to using conventional aircraft.

DARPA acknowledged that WALRUS airships could not be used in areas where the Air Force had not already established air superiority and in which all ground based air defenses had not been suppressed. In addition, around-the-clock operation (24/7) irrespective of weather conditions could not assured.

In mid-2005, DARPA launched a 12-month Phase 1 study with the award of contracts to Lockheed Martin’s Advanced Development Programs (the Skunk Works) in Palmdale, CA ($2,989,799) and Aeros Aeronautical Systems in Tarzana, CA ($3,267,000). Millennium Airship, Inc. / SkyFreighter and Advanced Technologies Group (ATG) / SkyCat were not offered Phase 1 contracts. Phase 1 work focused on trade studies to identify the most promising OV design options and associated technical risks. A technology development plan for risk reduction also was required. Both companies developed prototypes for their proposed designs.

- **Lockheed Martin P-791**: The first flight of the Lockheed P-791 hybrid airship took place on 31 January 2006 in Palmdale, CA.

![Lockheed Martin P-791, 2006. Source: Lockheed Martin](image-url)
• **Aeros Dragon Dream:** Under the Phase 1 contract, known as Project Pelican, Aeros successfully demonstrated the operation of their “Control of Static Heaviness” (COSH) variable buoyancy system in a ground-based test rig in 2006. Further DARPA and NASA funding under Project Pelican enabled Aeros to conduct an in-flight demonstration of a flight-weight COSH system on a modified Aeros 40D *Sky Dragon* non-rigid airship in 2007. The Aeros *Dragon Dream* COSH prototype finally was float tested and flight tested in 2013.

For more information on these WALRUS prototype airships, see my separate articles on the Lockheed Martin P-791 and the Aeros Aeroscraft *Dragon Dream*. Also see my separate articles on ATG SkyCat and Millennium Airship, Inc.

Aeros 40D Sky Dragon demonstrated COSH, 2007. Source: Aeros

Project WALRUS was terminated in mid-2006, after completion of Phase I. DARPA reduced FY2006 funding and the agency’s FY2007 budget request called for “termination of the WALRUS effort.” Congress obliged by not funding the effort in FY2007.

WALRUS Phase II, which was cancelled, was conceived as a three-year program to be performed by one contractor down-selected from Phase I. Phase II was to focus on design refinement, technology development, risk reduction demonstrations of components and systems, and flight testing an Advanced Technology Demonstration (ATD) scaled airship with a payload comparable to a C-130 Hercules fixed-wing cargo airplane (about 30 tons).

If WALRUS Phase II had been funded, the ATD airship would have been scheduled to fly within three years, before the end of FY2009 (by the end of September 2009).

5. Project WALRUS legacy

In spite of being cancelled early, Project WALRUS was important because of its contributions to the development of large hybrid airship and variable buoyancy airship technologies and practical airship designs. Project WALRUS also generally raising industry interest in the capabilities and potential roles for large modern airships.
After the termination of WALRUS, the Navy’s interest in lighter-than-air craft, including heavy lift hybrid airships, continued under the auspices of the NAVAIR Advanced Development Program Office (ADPO), Airship Concepts, which was formed in June 2002. More information is in my separate article on the Navy’s HULA program.

6. For more information:

- Jefferson Morris, “DARPA likely to take over heavy-lift airship project,” AerospaceDaily, 30 May 2003