Lockheed Martin compact fusion reactor (CFR)

Peter Lobner, 1 February 2021

When first announced in 2014, Lockheed claimed that its Skunk Works® team in Palmdale, CA would test a compact fusion reactor (CFR) in less than a year, build a prototype in five years, and deploy the system in 10 years. Lockheed Martin claimed that their CFR would be one-tenth the size of a tokamak with the same power output. The Lockheed Martin CFR website is here: https://www.lockheedmartin.com/en-us/products/compact-fusion.html

The CFR is a compact, D-T burning, magnetically encapsulated linear ring cusp that relies on high beta cusp confinement. Beta is the ratio of plasma pressure to magnetic pressure; conventional tokamaks like ITER have low beta (5%), while the CFR may have a beta of 1.0 or more. A pair of superconducting magnet coils define the limits of the fusion reaction chamber. Neutral beam injectors provide plasma heating for startup. The T4 prototype was expected to run in steady state for about 10 seconds after the injectors were turned off. The production machine would run continuously.

General arrangement of the Lockheed Martin CFR. 
Source: Lockheed Martin
The Fork in the Road to Electric Power From Fusion

The system is regulated by a self-tuning feedback mechanism, whereby the farther out the plasma expands, the stronger the magnetic field is encountered to push back to contain it. The basic magnetic field geometry inside the CFR is shown in the following diagrams.

**FIG. 6**
Magnetic fields in the compact fusion reactor.
Sources: (above) Patent US2018/0047462A1, (below) LM
The Fork in the Road to Electric Power From Fusion

In 2014, the T4 reactor was being designed to produce 100 MWe and be small enough to fit on a truck, in a 23 x 43 foot (7 x 13.1 m) container that weighed about 20 tons (18.1 metric tons).

By December 2017, the CFR prototype was known as the T4B. It measured 6.6 ft (2 m) long x 3.3 ft (1 m) in diameter and weighed about 20 tons (18.1 metric tons). The T4B was designed to produce one megawatt of energy. At that time, the commercial reactor design concept, the TX, measured 59 ft (18 m) long, 23 ft (7 m) in diameter, and weighed about 2,000 tons (1,814 metric tons). The TX was expected to produce 200 MWe of electric power. Lockheed Martin expected that the weight of the TX could be reduced to about 200 tons (181 metric tons).

Following T4B, the construction of the next design iteration, T5, was reported in July 2019. This will be a significantly larger and more powerful machine than T4 and is no longer designed to fit on a truck. Lockheed Martin’s path to a commercial fusion reactor includes three
The Fork in the Road to Electric Power From Fusion

more iterations (known as T6, T7 and T8) before they may be ready to commit to build, test and license the TX reactor for commercial operation. There is no announced timeline for these milestones.

Funding

Lockheed-Martin is a large publicly traded corporation (stock symbol LMT). Their compact fusion reactor program likely is funded from an internal research & development account. Lockheed Martin has not received DOE funding targeted for the development of low-cost, compact fusion power plants.

For more information

- Lt. Col. (res) Dr. Raphael Ofek, “Lockheed Martin’s Compact Fusion Reactor,” The Begin-Sadat Center for Strategic Studies,
The Fork in the Road to Electric Power From Fusion


Video

- “Lockheed Martin: Compact Fusion Research & Development,” (3:57 minutes), 2014: https://www.youtube.com/channel/UCJWcF0ex7_doPdIQGbVpDsQ?feature=emb_ch_name_ex

Patents