Lockheed Martin - SkyTug and LMH-1 hybrid airships

Peter Lobner, Updated 24 August 2021

1. Introduction

In the early 2000s, Lockheed Martin began developing hybrid airship technology. Their P-791 technology demonstrator flew in January 2006 under Phase 1 of the Defense Advanced Research Projects Agency’s (DARPA’s) Project WALRUS. Examples of Lockheed Martin’s early large civilian hybrid airship concepts are shown on the following graphics. These concepts evolved into the later, more refined SkyTug and LMH-1 hybrid airships addressed in this articles.
During the early 2000s, Lockheed Martin developed an impressive patent portfolio addressing key technologies associated with their hybrid airship designs, including:

- Semi-buoyant airship with pressure stabilized hull generating aerodynamic lift
- Thrust vectoring propulsion system
- Means to mount propulsion units directly on non-rigid airship hulls
- Means to support propulsion units with a rigid framework inside a non-rigid hull
- Air cushion landing system (ACLS)

For details on these Lockheed Martin patents, please refer to my separate article on their P-791 hybrid airship technology demonstrator.

2. First there was the SkyTug airship (2011 – 2013)

In March 2011, Lockheed Martin announced that it planned to develop a larger commercial version of the P-791, to be called SkyTug, which would be a scaled up hybrid airship designed to carry at least 20 tons of cargo. A trademark application for the term “SkyTug” was filed on 25 August 2011.

SkyTug was being developed for the Canadian firm Aviation Capital Enterprises of Calgary. The SkyTug was intended for use as a long-range transport for heavy machinery and equipment for oil and gas rigs drilling in remote locations. Instead of building expensive roads or railways to Arctic drilling sites, the SkyTug would enable equipment and personnel to be delivered by air directly to the site. The first commercial airship was expected to be delivered in 2012, and future versions were expected to have larger cargo carrying capacity.

According to Aviation Capital, “the fully vertical-takeoff-and-landing (VTOL) capable SkyTug will provide ‘greater payload and range at a
fraction of the cost of a helicopter’. The larger ships that will follow apparently won't be fully VTOL - they'll require something of a run-up on the ground to generate dynamic lift and get airborne, rather as an airplane does.”

Evidently, the VTOL version was to have proportionally more powerful vectored thrust engines to provide the needed propulsive lift for VTOL operations, while the larger versions would have had short takeoff and landing (STOL) performance typically associated with hybrid airships.

The basic performance characteristics of the SkyTug are summarized below (from 2011 CBO report):

- Length: 300 ft (91.4 m)
- Flight altitude: 10,000 ft (3,048 m)
- Average cruise speed: 80 – 100 knots
- Maximum payload: 20 – 30 tons (18.1 – 27.2 metric tons)
- Range: 1,500 miles (2,414 km)

The SkyTug trademark was abandoned in 2013.

3. The LMH-1 airship

By 2013, reference to SkyTug had disappeared and Lockheed Martin was promoting the LMH-1 as their next large commercial hybrid airship based on the P-791 design. Like the P-791, the LMH-1 will generate about 80% of its total lift from helium buoyancy and the balance from direct lift from vectored thrust engines and, in forward flight, from aerodynamic lift generated by the lifting-body fuselage.

The hull of the LMH-1 generates aerodynamic lift in forward flight.

Source: Lockheed Martin via LTA Society
As currently described by Lockheed Martin, the LMH-1 has the following general design characteristics:

- Accommodations: crew of 2, up to 19 passengers
- Payload / Range: 21 metric tons (21,000 kg / 46,300 lb) of cargo at a maximum speed: 60 kts (111 kph) over a range: 2,593 km (1,400 nautical miles).
- Cargo compartment: 18 x 3.2 x 3 meter (59 x 10.5 x 9.8 feet), a little bigger than the cargo box of the widely used Lockheed Martin C-130 Hercules fixed-wing cargo aircraft.
Overhead view of an LMH-1. Source: Lockheed Martin

LMH-1 general arrangement. Source: Lockheed Martin
As a hybrid airship, the LMH-1 typically will make a STOL takeoff and landing, using its air cushion landing system (ACLS) as demonstrated on the P-791. For an STOL takeoff at full load, the LMH-1 will require about 2,400 feet (732 meters) of clear space, which needs to be free of large obstacles but does not need to be paved. When lightly loaded, an LMH-1 may be able to takeoff and land vertically.

Since 2014, Hybrid Enterprises (http://www.hybridhe.com) has been marketing LMH-1 and is accepting orders at a price of about $40 million USD plus an additional $350,000 for a full charge of helium. This price is more than for a fixed-wing Hercules transport ($12 – $30 million). However, the airship is expected to have lower operating and maintenance costs, can takeoff and land on unimproved surfaces, requires minimal ground support equipment and can stay aloft for days if needed. You can review a 2017 Hybrid Enterprises / Lockheed Martin presentation on the LMH-1 hybrid airship here:

Maintenance of the airship’s large gas envelope is aided by an automated, self-propelled instrument called the SPIDER, which was developed in 2016 at the Lockheed Martin Skunk Works to find and repair pinhole leaks. SPIDER is shown in operation in the following short video (1:47 minutes):

https://www.youtube.com/watch?v=86EAzvXrESg

In September 2017, Lockheed Martin claimed it had Letters of Intent (LOIs) for 24 LMH-1 airships. It appears that their largest customer to date is Straightline Aviation (https://www.straightlineaviation.com), which has signed an LOI for 12 LMH-1s. You can watch a short (4:48 minute) 2018 video, “Straightline Aviation Hybrid Airship,” that describes their plans to use the LMH-1 to serve remote areas in Alaska and other areas of the world, at the following link:

https://www.youtube.com/watch?v=lx8KP3lU3Sw
LMH-1 exterior general arrangement.

Source: Lockheed Martin via BBC November 2019
LMH-1 gondola. Note the forward ACLS unit under the cabin.
Source: Lockheed Martin

LMH-1 interior layout.
Source: Hybrid Enterprises & Lockheed Martin, 2017
LMH-1 flight deck for a crew of two. Source: Lockheed Martin

LMH-1 accommodation bay. Source: Lockheed Martin
Walkway in the LMH-1 fuel bay (aka equipment bay) between the accommodation bay and the cargo bay, contains the diesel engines and associated fuel tanks. Source: Lockheed Martin

LMH-1 cargo bay contains cargo tie-downs and a strengthened deck capable of taking heavy construction vehicles and bulldozers. Source: Lockheed Martin
Lockheed Martin has produced several videos on their LMH-1 airship. The following two provide a good overview of airship operations.

- 2016 video, “Hybrid Airship: No Roads, No Problem,” (1:42 minutes): https://www.youtube.com/watch?v=JO76dkzV28k&t=1s

4. FAA certification of the LMZ1M (LMH-1) airship

In Modern Airships – Part 1 (https://lynceans.org/all-posts/modern-airships-part-1/), I made the following comment on the current state of aviation regulations pertaining to advanced airships:

“Current US, Canadian and European airship regulations were developed for non-rigid blimps and they fail to address how to certify most of the advanced airships currently under development. This means that the first airship manufacturers seeking type certificates for advanced airships will face uphill battles as they have to deal with aviation regulatory authorities struggling to fill in the big gaps in their regulatory framework and set precedents for later applicants.”

On March 12, 2012 the U.S. Federal Aviation Administration (FAA) announced that Lockheed Martin Aeronautics submitted an application for type certification for the model LMZ1M, which is “a manned cargo lifting hybrid airship incorporating a number of advanced features.” The FAA assigned that application to their docket number FAA-2013-0550.

To address the gap in airship regulations head-on, Lockheed Martin submitted to the FAA their recommended criteria document, “Hybrid Certification Criteria (HCC) for Transport Category Hybrid Airships,” which is a 206 page document developed specifically for the LMZ1M (LMH-1). The HCC is also known as Lockheed Martin Aeronautics Company Document Number 1008D0122, Rev. C, dated 31 January 2013. You can download the HCC document and other public docketed items on the FAA website here: https://beta.regulations.gov/docket/FAA-2013-0550/document
In November 2015, the FAA’s Seattle Aircraft Certification Office, approved Lockheed’s project-specific certification plan for the LMZ1M (LMH-1). In their 17 November 2015 press release, Lockheed Martin announced:

“Given that Hybrid Airships did not fit within existing FAA regulations, the team worked to create a new set of criteria allowing non rigid hybrid airships to safely operate in a commercial capacity. Transport Canada was also involved in the development of this criteria to ensure it included safety concerns unique to Canada.”

“Lockheed Martin and the FAA have been working together for more than a decade to define the criteria to certify Hybrid Airships for the Transport Category. This criteria was approved by the FAA in April 2013. Following that approval, the team has been developing the project specific certification plan over the past two years, which details how it will accomplish everything outlined in the Hybrid Certification Criteria.”

“Earlier this year Lockheed Martin along with Hybrid Enterprises LLC kicked off sales for the 20 ton variety of the Hybrid Airship. They are on track to deliver operational airships as early as 2018.”

There is nothing on the public webpage of docket FAA-2013-0550 that indicates the status of the certification effort. By 2017, the first “float out” of the LMZ1M (LMH-1) had slipped to 2019, and as of this writing in late 2020, the airship had not yet been unveiled.
5. Beyond the LMH-1

Lockheed expects that the basic LMH-1 design can be scaled up to carry much heavier cargo. After LMH-1, Lockheed Martin has revealed plans to build a larger LMH-2 90 ton cargo hybrid airship that would be more competitive with trucking and rail transport in remote areas. Eventually, a 500 ton cargo airship may be possible.

<table>
<thead>
<tr>
<th>LMH-2</th>
<th>LMH-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>![LMH-2 Image]</td>
<td>![LMH-3 Image]</td>
</tr>
</tbody>
</table>

- Regional cargo transport
- 3,000+ nm range
- Take-off & land from unimproved fields or water
- Lower operating costs (similar to fixed wing)

- Global cargo transport
- 6,000+ nm range
- Very large cargo hold
- Containerized freight mover
- Take-off & land from unimproved land or sea
- Lowest operating cost

Specifications

- **LMH-2**: 150’x22’x20’
 - 90 Ton:
 - 423’ long, 242’ wide
 - 117’ tall

- **LMH-3**: 290’x48’x26’
 - 500 Ton:
 - 742’ long, 394’ wide
 - 202’ tall

Source: Hybrid Enterprises & Lockheed Martin, 2017
6. For more information:

LMH-1

SkyTug

“Enter the SkyTug,” How It Works, 11 February 2012: https://www.howitworksdaily.com/enter-the-skytug/

Related Modern Airship articles

- Lockheed Martin Aerocraft hybrid airship
- Lockheed Martin P791 hybrid airship