Nanophotonics Technology and Applications
Dr. Y. Fainman
Cymer Professor of Advanced Optical Technologies and
Chair of the Department of Electrical and Computer Engineering
University of California, San Diego
Various future system applications that involve photonic technology rely on our ability to integrate it on a chip to augment and/or interact with other signals (e.g., electrical, chemical, biomedical, etc.). For example, future computing and communication systems will need integration of photonic circuits with electronics and thus require miniaturization of photonic materials, devices and subsystems. Another example, involves integration of microfluidics with nanophotonics, where former is used for particle manipulation, preparation and delivery, and the latter in a large size array form parallel detection of numerous biomedical reactions useful for healthcare applications. To advance the nanophotonics technology we established design, fabrication and testing tools. The design tools need to incorporate not only the electromagnetic equations, but also the material and quantum physics equations to include near field interactions. These designs are integrated with device fabrication and characterization to validate the device concepts and optimize their performance. Our research work emphasizes the construction of passive (e.g., engineered composite metamaterials, filters, etc.) and active (e.g., nanolasers) components on-chip, with the same lithographic tools as electronics. In this talk, we discuss some of the passive metamaterials and devices that recently have been demonstrated in our lab. These include our most recent results on monolithically integrated short pulse compressor utilized with SOI material platform and design, fabrication and testing of nanolasers constructed using metal-dielectric-semiconductor resonators confined in all three dimensions.
The following is a link to the presentation (pdf file extension).