Category Archives: Commercial aviation

Airbus Delivers its 10,000th Aircraft

Airbus was founded on 18 December 1970 and delivered its first aircraft, an A300B2, to Air France on 10 May 1974. This was the world’s first twin-engine, wide body (two aisles) commercial airliner, beating Boeing’s 767, which was not introduced into commercial service until September 1982. The A300 was followed in the early 1980s by a shorter derivative, the A310, and then, later that decade, by the single-aisle A320. The A320 competed directly with the single-aisle Boeing 737 and developed into a very successful family of single-aisle commercial airliners: A318, A319, A320 and A321.

On 14 October 2016, Airbus announced the delivery of its 10,000th aircraft, which was an A350-900 destined for service with Singapore Airlines.

EVE-1236Source: Airbus

In their announcement, Airbus noted:

“The 10,000th Airbus delivery comes as the manufacturer achieves its highest level of production ever and is on track to deliver at least 650 aircraft this year from its extensive product line. These range from 100 to over 600 seats and efficiently meet every airline requirement, from high frequency short haul operations to the world’s longest intercontinental flights.”

You can read the complete Airbus press release at the following link:

http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/-9b32c4364a/

As noted previously, Airbus beat Boeing to the market for twinjet, wide-body commercial airliners, which are the dominant airliner type on international and high-density routes today. Airbus also was an early adopter of fly-by-wire flight controls and a “glass cockpit”, which they first introduced in the A320 family.

In October 2007, the ultra-large A380 entered service, taking the honors from the venerable Boeing 747 as the largest commercial airliner.   Rather than compete head-to-head with the A380, Boeing opted for stretching its 777 and developing a smaller, more advanced and more efficient, all-composite new airliner, the 787, which was introduced in airline service 2011.

Airbus countered with the A350 XWB in 2013. This is the first Airbus with fuselage and wing structures made primarily of carbon fiber composite material, similar to the Boeing 787.

The current Airbus product line comprises a total of 16 models in four aircraft families: A320 (single aisle), A330 (two aisle wide body), A350 XWB (two aisle wide body) and A380 (twin deck, two aisle wide body). The following table summarizes Airbus commercial jet orders, deliveries and operational status as of 30 November 2016.

Airbus orders* Includes all models in this family. Source: https://en.wikipedia.org/wiki/Airbus

Boeing is the primary competitor to Airbus. Boeing’s first commercial jet airliner, the 707, began commercial service Pan American World Airways on 26 October 1958. The current Boeing product line comprises five airplane families: 737 (single-aisle), 747 (twin deck, two aisle wide body), 767 (wide body, freighter only), 777 (two aisle wide body) and 787 (two aisle wide body).

The following table summarizes Boeing’s commercial jet orders, deliveries and operational status as of 30 June 2016. In that table, note that the Boeing 717 started life in 1965 as the Douglas DC-9, which in 1980 became the McDonnell-Douglas MD-80 (series) / MD-90 (series) before Boeing acquired McDonnell-Douglas in 1997. Then the latest version, the MD-95, became the Boeing 717.

Boeing commercial order status 30Jun2016

Source: https://en.wikipedia.org/wiki/Boeing_Commercial_Airplanes

Boeing’s official sales projections for 2016 are for 740 – 745 aircraft. Industry reports suggest a lower sales total is more likely because of weak worldwide sales of wide body aircraft.

Not including the earliest Boeing models (707, 720, 727) or the Douglas DC-9 derived 717, here’s how the modern competition stacks up between Airbus and Boeing.

Single-aisle twinjet:

  • 12,805 Airbus A320 family (A318, A319, A320 and A321)
  • 14,527 Boeing 737 and 757

Two-aisle twinjet:

  • 3,260 Airbus A300, A310, A330 and A350
  • 3,912 Boeing 767, 777 and 787

Twin aisle four jet heavy:

  • 696 Airbus A340 and A380
  • 1,543 Boeing 747

These simple metrics show how close the competition is between Airbus and Boeing. It will be interesting to see how these large airframe manufacturers fare in the next decade as they face more international competition, primarily at the lower end of their product range: the single-aisle twinjets. Former regional jet manufacturers Bombardier (Canada) and Embraer (Brazil) are now offering larger aircraft that can compete effectively in some markets. For example, the new Bombardier C Series is optimized for the 100 – 150 market segment. The Embraer E170/175/190/195 families offer capacities from 70 to 124 seats, and range up to 3,943 km (2,450 miles).  Other new manufacturers soon will be entering this market segment, including Russia’s Sukhoi Superjet 100 with about 108 seats, the Chinese Comac C919 with up to 168 seats, and Japan’s Mitsubishi Regional Jet with 70 – 80 seats.

At the upper end of the market, demand for four jet heavy aircraft is dwindling. Boeing is reducing the production rate of its 747-8, and some airlines are planning to not renew their leases on A380s currently in operation.

It will be interesting to watch how Airbus and Boeing respond to this increasing competition and to increasing pressure for controlling aircraft engine emissions after the Paris Agreement became effective in November 2016.

Status of Ukraine’s Giant Transport Aircraft: Antonov An-124 and An-225

Historically, the Antonov Design Bureau was responsible for the design and development of large military and civil transport aircraft for the former Soviet Union. With headquarters and production facilities in and around Kiev, this Ukrainian aircraft manufacturing and servicing firm is now known as Antonov State Company. The largest of the jet powered transport aircraft built by Antonov are the four-engine An-124 and the even larger six-engine An-225.

An-124 Ruslan (NATO name: Condor)

The An-124 made its first flight in December 1982 and entered operational service in 1986. This aircraft is a counterpart to the Lockheed C-5A, which is the largest U.S. military transport aircraft. A comparison of the basic parameters of these two aircraft is presented in the following table.

An-124 vs C-5A_AviatorjoedotnetSource: aviatorjoe.net

As you can see in this comparison, the An-124 is somewhat larger than the C-5A, which has a longer range, but at a slower maximum speed.

The An-124 currently is operated by the Russian air force and also by two commercial cargo carriers: Ukraine’s Antonov Airlines and Russia’s Volga-Dnepr Airlines. The civil An-124-100 is a commercial derivative of the military An-124. The civil version was certified in 1992, and meets all current civil standards for noise limits and avionic systems.

In their commercial cargo role, these aircraft specialize in carrying outsized and/or very heavy cargo that cannot be carried by other aircraft. These heavy-lift aircraft serve civil and military customers worldwide, including NATO and the U.S. military. I’ve seen an An-124s twice on the tarmac at North Island Naval Station in San Diego. In both cases, it arrived in the afternoon and was gone before sunrise the next day. Loading and/or unloading occurred after dark.

An-124_RA-82028_09-May-2010An-124-100. Source: Wikimedia Commons

As shown in the following photo, the An-124 can retract its nose landing gear and “kneel” to facilitate cargo loading through the raised forward door.

An-124_ramp downAn-124-100. Source: Mike Young / Wikimedia Commons

The following diagram shows the geometry and large size of the cargo hold on the An-124. The built-in cargo handling equipment includes an overhead crane system capable of lifting and moving loads up to 30 metric tons (about 66,100 pounds) within the cargo hold. As shown in the diagram below, the cargo hold is about 36.5 meters (119.7 feet) long, 6.4 meters (21 feet) wide, and the clearance from the floor to the ceiling of the cargo hold is 4.4 meters (14.4 feet). The installed crane hoists may reduce overhead clearance to 3.51 meters (11.5 feet).

An-124-diagram_tcm87-4236An-124-100 cargo hold dimensions. Source: aircharterservice.com

An-124_takeoffAn-124-100. Source: aircharterservice.com

Production of the An-124 was suspended following the Russian annexation of Crimea in 2014 and the ongoing tensions between Russia and Ukraine. In spite of repeated attempts by Ukraine to restart the An-124 production line, it appears that Antonov may not have the resources to restart An-124 production. For more information on this matter, see the 22 June 2016 article on the Defense Industry Daily website at the following link:

http://www.defenseindustrydaily.com/more-an124s-on-the-way-antonov-signs-agreement-with-key-customers-02913/?utm_source=Sailthru&utm_medium=email&utm_campaign=Military%20EBB%206-22-16&utm_term=Editorial%20-%20Military%20-%20Early%20Bird%20Brief

An-225 Mriya

The An-225 was adapted from the An-124 and significantly enlarged to serve as the carrier aircraft for the Soviet space shuttle, the Buran. The relative sizes of the An-124 and An-225 are shown in the following diagram, with a more detailed comparison in the following table.

An-124 & 225 planform comparisonAn-124 & -225 comparison. Source: Airvectors.com

An-124 & 225 comparisonAn-124 & -225 comparison. Source: aviatorjoe.net

The only An-225 ever produced made its first flight in December 1988. It is shown carrying the Buran space shuttle in the following photo.

AN-225 & BuranAn-225 carrying Buran space shuttle. Source: fcba.tumblr.com

After the collapse of the Soviet Union in 1991 and the cancellation of the Buran space program, the An-225 was mothballed for eight years until Antonov Airlines reactivated the aircraft for use as a commercial heavy-lift transport. In this role, it can carry ultra-heavy / oversize cargo weighing up to 250 metric tons (551,000 pounds).

An-225 gear downAn-225 Mriya. Source: AntonovAn-225 gear up

Surprisingly, it appears that the giant An-225 is about to enter series production. Antonov and Aerospace Industry Corporation of China (AICC) signed a deal on 30 August 2016 that will result in An-225 production in China. The first new An-225 could be produced in China as early as in 2019.

When it enters service, this new version of the An-225 will modernize and greatly expand China’s military and civil airlift capabilities. While it isn’t clear how this airlift capability will be employed, it certainly will improve China ability to deliver heavy machinery, bulk material, and many personnel anywhere in the world, including any location in and around the South China Sea that has an adequate runway.

For more information on this Ukraine – China deal, see the 31 August 2016 article by Gareth Jennings entitled, “China and Ukraine agree to restart An-225 production,” on the IHS Jane’s 360 website at the following link:

http://www.janes.com/article/63341/china-and-ukraine-agree-to-restart-an-225-production

You’ll find more general information on the An-124 and An-225 on the Airvectors website at the following link:

http://www.airvectors.net/avantgt.html

 

 

 

 

Modern Airships

This August 2016 post, which included links to 14 articles on specific historic and modern  airships, was replaced in August 2019.

“Modern Airships” now a three-part post that contains an overview of modern airship technology in Part 1 and links in Parts 1, 2 and 3 to 79 individual articles on historic and advanced airship designs. Here are the links to all three parts:

You’ll find a consolidated Table of Contents for all three parts at the following link.  This should help you navigate the large volume of material in the three posts.

I hope you’ll find the new Modern Airships series of posts to be informative, useful, and different from any other single source of information on this subject.

Best regards,

Peter Lobner

August 2019

 

How Long Does it Take to Certify a Commercial Airliner?

After designing, developing, and manufacturing a new commercial airliner, I’m sure the airframe manufacturer has a big celebration on the occasion of the first flight. The ensuing flight test and ground static test programs are intended to validate the design, operating envelope, and maintenance practices and satisfy these and other requirements of the national certifying body, which in the U.S. is the Federal Aviation Administration (FAA). Meanwhile, airlines that have ordered the new aircraft are planning for its timely delivery and introduction into scheduled revenue service.

The time between first flight and first delivery of a new commercial airliner is not a set period of time. As you can see in the following chart, which was prepared by Brian Bostick (http://aviationweek.com/thingswithwings), there is great variability in the time it takes to get an airliner certified and delivered.

Time to certify an airliner

In this chart, the Douglas DC-9 has the record for the shortest certification period (205 days) with certification in November 1965. The technologically advanced supersonic Concorde had one of the longest certification periods (almost 2,500 days), with authorization in February 1976 to conduct a 16-month demonstration period with flights between Europe and the U.S. before starting regular commercial service.

The record for the longest certification period goes to the Chinese Comac ARJ21 twin-jet airliner, which is the first indigenous airliner produced in China. The first ARJ21 was delivered to a Chinese airline in November 2015. The ARJ is based on the DC-9 and reuses tooling provided by McDonnell Douglas for the licensed production of the MD-80 (a DC-9 variant) in China. I suspect that the very long certification period is a measure of the difficulty in establishing the complete aeronautical infrastructure needed to deliver an indigenous commercial airliner with an indigenous jet engine.

In the chart, compare the certification times for the following similar commercial airliners:

  • Four-engine, single aisle, long-range airliners: Boeing 707 (shortest), Douglas DC-8, Convair CV-880, Vickers VC-10, De Havilland Comet (longest)
  • Three-engine, single aisle, medium range airliners: Boeing 727 (shorter), Hawker Siddeley Trident (longer)
  • Two-engine, single aisle airliners: Douglas DC-9 (shortest), Boeing 737, Boeing 757, Airbus A320, British Aircraft Corporation BAC 1-11, Dassault Mercure, Caravelle (longest)
  • Two-engine, single aisle, short range regional jets: Embraer ERJ 145 (shortest), Bombardier CRJ-100, BAe 146, Fokker F-28, ERJ 170, Bombardier CS Series, Mitsubishi MRJ, Sukhoi Superjet, VFW-614, Comac ARJ21 (longest)
  • Four-engine, wide-body, long-range airliners: Boeing 747, Airbus A340, Airbus A380 (longest)
  • Three-engine, wide-body, long-range airliners: Douglas DC-10 (shorter), Lockheed L-1011 (longer)
  • Two-engine, wide-body airliners: Boeing 767 (shortest), Boeing 777, Airbus 350, Airbus A300, Boeing 787 (longest)

Time is money, so there is tremendous economic value in minimizing the time between first flight and first delivery. The first 16 aircraft at the top of the chart all enjoyed relatively short certification periods. This group, which includes many aircraft that appeared in the 1960s – 70, averaged about 400 days between first flight and first delivery.

More modern aircraft (blue bars in the chart representing aircraft appearing in 2000 or later) have been averaging about 800 days between first flight and first delivery (excluding ARJ21).