Category Archives: Lasers and applications

Standby for a New Round of Gravitational Wave Detection

Since late August 2017, the US LIGO 0bservatories in Washington and Louisiana and the European Gravitational Observatory (EGO), Virgo, in Italy, have been off-line for updating and testing.  These gravitational wave observatories were set to start Observing Run 3 (O3) on 1 April 2019 and conduct continuous observations for one year.  All three of these gravitational wave observatories have improved sensitivities and are capable of “seeing” a larger volume of the universe than in Observing Run 2 (O2).

Later in 2019, the Japanese gravitational wave observatory, KAGRA, is expected to come online for the first time and join O3.  By 2024, a new gravitational wave observatory in India is expected to join the worldwide network.

On the advent of this next gravitational wave detection cycle, here’s is a brief summary of the status of worldwide gravitational wave observatories.

Advanced LIGO 

The following upgrades were implemented at the two LIGO observatories since Observing Run 2 (O2) concluded in 2017:

  • Laser power has been doubled, increasing the detectors’ sensitivity to gravitational waves.
  • Upgrades were made to LIGO’s mirrors at both locations, with five of eight mirrors being swapped out for better-performing versions.
  • Upgrades have been implemented to reduce levels of quantum noise. Quantum noise occurs due to random fluctuations of photons, which can lead to uncertainty in the measurements and can mask faint gravitational wave signals. By employing a technique called quantum “squeezing” (vacuum squeezing), researchers can shift the uncertainty in the laser light photons around, making their amplitudes less certain and their phases, or timing, more certain. The timing of photons is what is crucial for LIGO’s ability to detect gravitational waves.  This technique initially was developed for gravitational wave detectors at the Australian National University, and matured and routinely used since 2010 at the GEO600 gravitational wave detector in Hannover, Germany,

In comparison to its capabilities in 2017 during O2, the twin LIGO detectors have a combined increase in sensitivity of about 40%, more than doubling the volume of the observable universe.

You’ll find more news and information on the LIGO website at the following link:


GEO600 is a modest-size laser interferometric gravitational wave detector (600 meter / 1,969 foot arms) located near Hannover, Germany. It was designed and is operated by the Max Planck Institute for Gravitational Physics, along with partners in the United Kingdom.

In mid-2010, GEO600 became the first gravitational wave detector to employ quantum “squeezing” (vacuum squeezing) and has since been testing it under operating conditions using two lasers: its standard laser, and a “squeezed-light” laser that just adds a few entangled photons per second but significantly improves the sensitivity of GEO600.  In a May 2013 paper entitled, “First Long-Term Application of Squeezed States of Light in a Gravitational Wave Observatory,” researchers reported the following results of operational tests in 2011 and 2012.

“During this time, squeezed vacuum was applied for 90.2% (205.2 days total) of the time that science-quality data were acquired with GEO600. A sensitivity increase from squeezed vacuum application was observed broadband above 400 Hz. The time average of gain in sensitivity was 26% (2.0 dB), determined in the frequency band from 3.7 to 4.0 kHz. This corresponds to a factor of 2 increase in the observed volume of the Universe for sources in the kHz region (e.g., supernovae, magnetars).”

The installed GEO600 squeezer (in the foreground) inside the GEO600 clean room together with the vacuum tanks (in the background).  

While GEO600 has conducted observations in coordination with LIGO and Virgo, GEO600 has not reported detecting gravitational waves. At high frequencies GEO600 sensitivity is limited by the available laser power. At the low frequency end, the sensitivity is limited by seismic ground motion.

You’ll find more information on GEO600 at the following link:

Advanced Virgo, the European Gravitational Observatory (EGO)

At Virgo, the following upgrades were implemented since Observing Run 2 (O2) concluded in 2017:

  • The steel wires used during O2 observation campaign to suspend the four main mirrors of the interferometer have been replaced.  The 42 kg (92.6 pound) mirrors now are suspended with thin fused-silica (glass) fibers, which are expected to increase the sensitivity in the low-medium frequency region.  The mirrors in Advanced LIGO have been suspended by similar fused-silica fibers since those two observatories went online in 2015.
  • A more powerful laser source has been installed, which should improve sensitivity at high frequencies. 
  • Quantum “squeezing” has been implemented in collaboration with the Albert Einstein Institute in Hannover, Germany.  This should improve the sensitivity at high frequencies.
Virgo mirror suspension with fused-silica fibers.  
Source: EGO/Virgo Collaboration/Perciballi

In comparison to its capabilities in 2017 during O2, Virgo sensitivity has been improved by a factor of about 2, increasing the volume of the observable universe by a factor of about 8.

You’ll find more information on Virgo at the following link:

Japan’s KAGRA 

KAGRA is a cryogenically-cooled laser interferometer gravitational wave detector that is sited in a deep underground cavern in Kamioka, Japan.  This gravitational wave observatory is being developed by the Institute for Cosmic Ray Research (ICRR) of the University of Tokyo.  The project website is at the following link:

One leg of the KAGRA interferometer.  
Source: ICRR, University of Tokyo

The cryogenic mirror cooling system is intended to cool the mirror surfaces to about 20° Kelvin (–253° Celsius) to minimize the motion of molecules (jitter) on the mirror surface and improve measurement sensitivity.   KAGRA’s deep underground site is expected to be “quieter” than the LIGO and VIRGO sites, which are on the surface and have experienced effects from nearby vehicles, weather and some animals.

The focus of work in 2018 was on pre-operational testing and commissioning of various systems and equipment at the KAGRA observatory. In December 2018, the KAGRA Scientific Congress reported that, “If our schedule is kept, we expect to join (LIGO and VIRGO in) the latter half of O3…”   You can follow the latest news from the KAGRA team here:


IndIGO, the Indian Initiative in Gravitational-wave Observations, describes itself as an initiative to set up advanced experimental facilities, with appropriate theoretical and computational support, for a multi-institutional Indian national project in gravitational wave astronomy.  The IndIGO website provides a good overview of the status of efforts to deploy a gravitational wave detector in India.  Here’s the link:

On 22 January 2019, T. V. Padma reported on the Naturewebsite that India’s government had given “in-principle” approval for a LIGO gravitational wave observatory to be built in the western India state of Maharashtra. 

“India’s Department of Atomic Energy and its Department of Science and Technology signed a memorandum of understanding with the US National Science Foundation for the LIGO project in March 2016. Under the agreement, the LIGO Laboratory — which is operated by the California Institute of Technology (Caltech) in Pasadena and the Massachusetts Institute of Technology (MIT) in Cambridge — will provide the hardware for a complete LIGO interferometer in India, technical data on its design, as well as training and assistance with installation and commissioning for the supporting infrastructure. India will provide the site, the vacuum system and other infrastructure required to house and operate the interferometer — as well as all labor, materials and supplies for installation.”

India’s LIGO observatory is expected to cost about US$177 million.  Full funding is expected in 2020 and the observatory currently is planned for completion in 2024.  India’s Inter-University Centre for Astronomy and Astrophysics (IUCAA), also in Maharashtra  state, will lead the project’s gravitational-wave science and the new detector’s data analysis.

For T. V. Padma’s complete article, refer to:

Spatial resolution of gravitational wave events

Using only the two US LIGO detectors, it is not possible to localize the source of gravitational waves beyond a broad sweep through the sky.  On 1 August 2017, Virgo joined LIGO during the second Observation Run, O2. While the LIGO-Virgo three-detector network was operational for only three-and-a-half weeks, five gravitational wave events were observed.  As shown in the following figure, the spatial resolution of the source was greatly improved when a triple detection was made by the two LIGO observatories and Virgo. These events are labeled with the suffix “HLV”.  

Source:, 3 December 2018

The greatly reduced areas of the triple event localizations demonstrate the capabilities of the current global gravitational wave observatory network to resolve the source of a gravitational-wave detection.  The LIGO and Virgo Collaboration reports that it can send Open Public Alerts within five minutes of a gravitational wave detection.

With timely notification and more precise source location information, other land-based and space observatories can collaborate more rapidly and develop a comprehensive, multi-spectral (“multi-messenger”) view of the source of the gravitational waves.

When KAGRA and LIGO-India join the worldwide gravitational wave detection network, it is expected that source localizations will become 5 to 10 times more accurate than can be accomplished with just the LIGO and Virgo detectors.

For more background information on gravitational-wave detection, see the following Lyncean posts:

2018 Nobel Prize in Physics

On 2 October 2018, the Royal Swedish Academy of Sciences announced the winners of the 2018 Nobel Prize in Physics. Arthur Ashkin (US) shares this Nobel Prize with Gérard Mourou (France) and Donna Strickland (Canada) for their “groundbreaking inventions in the field of laser physics.”

Arthur Ashkin’s award was “for the optical tweezers and their application to biological systems.” This is a technique developed by Ashkin in the late 1960s (first published in 1970) using laser beam(s) to create a force trap that can be used to physically hold and move microscopic objects (from atoms and molecules to living cells).  The technique now is widely used in studying a variety of biological systems, with applications such as cell sorting and bio-molecular assay.

You’ll find a detailed briefing entitled, “Optical Tweezers – Working Principles and Applications,” here:

Arthur Ashkin. Source:

Arthur Ashkin is a researcher at Bell Laboratories in New Jersey.  At 96, he the oldest person to be awarded a Nobel Prize.

The award to Mourou and Strickland was “for their method of generating high-intensity, ultra-short optical pulses.” They developed a technique in the mid-1980s called “chirped pulse amplification” (CPA) that is used to produce very short duration laser pulses of very high intensity.  CPA is applied today in laser micromachining, surgery, medicine, and in fundamental science studies.

You’ll find a brief tutorial entitled, “Chirped-Pulse Amplification Ultrahigh peak power production from compact short-pulse laser systems,” here:

  Gérard Mourou. Source: American Physical Society (APS).  Donna Strickland. Source: University of Waterloo

Gérard Mourou is the director of the Laboratoire d’Optique Appliquee at the ENSTA ParisTech (École nationale supérieure de techniques avancées).  He was Donna Strickland’s PhD advisor.

Donna Strickland is an associate professor in the Physics and Astronomy Department of the University of Waterloo, Canada (about 90 km west of Toronto).  She is the first female Physics laureate in 55 years. The preceding female Physics laureates were:

  • In 1963, Maria Goeppert-Mayer was recognized for her work on the structure of atomic nuclei (shared with J. Hans D. Jensen and Eugene Wigner).
  • In 1903, Marie Curie was recognized for her pioneering work on nuclear radiation phemomena (shared with Pierre Curie and Henri Becquerel).

You can read the press release from the Royal Swedish Academy of Sciences for the 2018 Nobel Prize in Physics here:

Congratulations to the 2018 Nobel Physics laureates!

Lidar Remote Sensing Helps Archaeologists Uncover Lost City and Temple Complexes in Cambodia

In Cambodia, remote sensing is proving to be of great value for looking beneath a thick jungle canopy and detecting signs of ancient civilizations, including temples and other structures, villages, roads, and hydraulic engineering systems for water management. Building on a long history of archaeological research in the region, the Cambodian Archaeological Lidar Initiative (CALI) has become a leader in applying lidar remote sensing technology for this purpose. You’ll find the CALI website at the following link:

Areas in Cambodia surveyed using lidar in 2012 and 2015 are shown in the following map.

Angkor Wat and vicinity_CALISource: Cambodian Archaeological LIDAR Initiative (CALI)

CALI describes its objectives as follows:

“Using innovative airborne laser scanning (‘lidar’) technology, CALI will uncover, map and compare archaeological landscapes around all the major temple complexes of Cambodia, with a view to understanding what role these complex and vulnerable water management schemes played in the growth and decline of early civilizations in SE Asia. CALI will evaluate the hypothesis that the Khmer civilization, in a bid to overcome the inherent constraints of a monsoon environment, became locked into rigid and inflexible traditions of urban development and large-scale hydraulic engineering that constrained their ability to adapt to rapidly-changing social, political and environmental circumstances.”

Lidar is a surveying technique that creates a 3-dimensional map of a surface by measuring the distance to a target by illuminating the target with laser light. A 3-D map is created by measuring the distances to a very large number of different targets and then processing the data to filter out unwanted reflections (i.e., reflections from vegetation) and build a “3-D point cloud” image of the surface. In essence, lidar removes the surface vegetation, as shown in the following figure, and produces a map with a much clearer view of surface features and topography than would be available from conventional photographic surveys.

Lidar sees thru vegetation_CALISource: Cambodian Archaeological LIDAR Initiative

CALI uses a Leica ALS70 lidar instrument. You’ll find the product specifications for the Leica ALS70 at the following link:

CALI conducts its surveys from a helicopter with GPS and additional avionics to help manage navigation on the survey flights and provide helicopter geospatial coordinates to the lidar. The helicopter also is equipped with downward-looking and forward-looking cameras to provide visual photographic references for the lidar maps.

Basic workflow in a lidar instrument is shown in the following diagram.

Lidar instrument workflow_Leica

An example of the resulting point cloud image produced by a lidar is shown below.

Example lidar point cloud_Leica

Here are two views of a site named Choeung Ek; the first is an optical photograph and the second is a lidar view that removes most of the vegetation. I think you’ll agree that structures appear much more clearly in the lidar image.

Choueng_Ek_Photo_CALISource: Cambodian Archaeological LIDAR InitiativeChoueng_Ek_Lidar_CALISource: Cambodian Archaeological LIDAR Initiative

An example of a lidar image for a larger site is shown in the following map of the central monuments of the well-researched and mapped site named Sambor Prei Kuk. CALI reported:

“The lidar data adds a whole new dimension though, showing a quite complex system of moats, waterways and other features that had not been mapped in detail before. This is just the central few sq km of the Sambor Prei Kuk data; we actually acquired about 200 sq km over the site and its environs.”

Sambor Prei Kuk lidar_CALISource: Cambodian Archaeological LIDAR Initiative

For more information on the lidar archaeological surveys in Cambodia, please refer to the following recent articles:

See the 18 July 2016 article by Annalee Newitz entitled, “How archaeologists found the lost medieval megacity of Angkor,” on the arsTECHNICA website at the following link:

On the Smithsonian magazine website, see the April 2016 article entitled, “The Lost City of Cambodia,” at the following link:

Also on the Smithsonian magazine website, see the 14 June 2016 article by Jason Daley entitled, “Laser Scans Reveal Massive Khmer Cities Hidden in the Cambodian Jungle,” at the following link: