Tag Archives: VIRGO

Gravitational Waves Come in Colors

On 14 September 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) ushered in a new era in astronomy and astrophysics by opening a part of the gravitational wave spectrum to direct observation. In my 17 February 2017 post,“Perspective on the Detection of Gravitational Waves,” I included the following graphic from an interview of Kip Thorne by Walter Issacson.

Source: screenshot from Kip Thorne / Walter Issacson interview at: https://www.youtube.com/watch?v=mDFF27Nr-EU

The key point of this graphic is to illustrate how the LIGO detector is able to “see” only a part of the gravitational wave spectrum.  The LIGO team reported that the Advanced LIGO detector is optimized for “a range of frequencies from 30 Hz to several kHz, which covers the frequencies of gravitational waves emitted during the late inspiral, merger, and ringdown of stellar-mass binary black holes.”  This is the type of event associated with the first several gravitational wave detections. The European Advanced VIRGO detector, which came on line in 2017, operates on the same principle as LIGO, precisely measuring differences in the times-of-flight of laser beams in the two legs of a long baseline interferometer. VIRGO is optimized to view a range of gravitational wave frequencies from about 10 Hz to 10 kHz.

On 17 August 2017, LIGO and VIRGO detected gravitational waves from a different source: the collision of two neutron stars. Unlike the previous gravitational wave detections from black hole coalescence, the neutron star collision that produced GW180817 also produced other observable phenomena in multiple wavelength bands. LIGO and VIRGO triangulated the source of this gravitational wave event, which also was observed by dozens of telescopes on the ground and in space, as shown in the following diagram.

Source: LIGO – VIRGO, https://www.ligo.org/detections/GW170817/images-GW170817/GW+EM_Observatories.jpg

The ability to cue a worldwide array of multi-spectral observatories on short notice greatly added to the depth of understanding of the GW170817 event.  The international collaboration on this event was a great example of the benefits of “multi-messenger” astronomy. For more information, see my 25 October 2017 post, “Linking Gravitational Wave Detection to the Rest of the Observable Spectrum.”

At the 11 April 2018 Lyncean Group meeting, Dr. Rana Adhikari, Professor of Physics, Mathematics and Astronomy at Caltech, provided an update on LIGO in his presentation, “The Dirty Details of Detecting Gravitational Waves from Black Holes.” You can view Dr. Adhikari’s presentation slides at the following link:

https://lynceans.org/talk-119-4-11-18/

As we have seen, the LIGO class of gravitational wave detector is capable of seeing large amplitude, relatively high frequency gravitational waves from very powerful, discrete events: stellar-mass binary black hole coalescence and neutron star collisions.

As shown in the above graphic, viewing lower frequency (longer wavelength) gravitational waves requires different types of detectors, which are discussed below.

LISA –  Laser Interferometer Space Antenna

This will be a very long baseline, equilateral triangular laser interferometer in space, established of three spacecraft flying in formation in an Earth-trailing heliocentric orbit.  Each leg of the space interferometer will measure 2.5 million kilometers (1.55 million miles), about 625,000 times the length of the LIGO baseline (4 km, 2.49 miles). Each spacecraft will contain a gravitational wave detector sensitive at frequencies from about 10-4 Hz to 10-1 Hz, well below the frequency range of LIGO and VIRGO.

The European Space Agency’s (ESA) LISA Pathfinder spacecraft, which was launched in 2015 and ended its mission in July 2017, validated the technology for the LISA space interferometer.

Source: ESA, https://www.elisascience.org/

ESA reported:

“Analysis of the LISA Pathfinder mission results towards the end of the mission (red line) compared with the first results published shortly after the spacecraft began science operations (blue line). The initial requirements (top, wedge-shaped area) and that of the future gravitational-wave observatory LISA (middle, striped area) are included for comparison, and show that LISA Pathfinder far exceeded expectations.”

The ESA is planning to launch LISA in the 2029 – 2032 timeframe.  See my 27 September 2016 post, “Space-based Gravity Wave Detection System to be Deployed by ESA,” for additional information on LISA.  The LISA mission website is at the following link:

https://www.elisascience.org

PTA – Pulsar Timing Array

A pulsar is a highly magnetized rotating neutron star or white dwarf that emits a beam of electromagnetic radiation. This radiation can be observed only when the beam is pointing toward Earth.

PTA gravitational wave detection is based on correlated radio-telescope observations of an array of many pulsars known as “millisecond pulsars” (MSPs).  The signal from an MSP has a very predictable time-of-arrival (TOA), thereby allowing each MSP to function as a galactic “clock.”  Small disturbances in each “clock” are measurable with high precision on Earth.  In essence, the distance between an MSP and the observing radio-telescope forms one leg of a gravitational wave detector, with the leg length being measured in light-years.  A disturbance from a passing gravitational wave would to have a measurable signature across the many MSPs in the pulsar timing array.

A PTA is intended to observe in a different range in gravitational wave frequencies than LIGO and VIRGO, and is expected to see a different category of gravitational wave sources. Whereas LIGO and VIRGO can detect gravitational waves in the tens to thousands of Hz (audio) range, radio-telescope observatories currently are using PTAs to search for gravitational waves in the tens to hundreds of microHertz (10-6Hz) range with prospects of getting down to the 10-8Hz range. The primary source of gravitational waves in this frequency range is expected to be super-massive black hole binaries (billions of solar masses), which are believed to exist throughout the universe at the center of galaxies.

The International Pulsar Timing Array (IPTA) is an international collaboration among the following radio-telescope consortia: European Pulsar Timing Array (EPTA), the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), and the Parkes Pulsar Timing Array (PPTA).  The goal of the IPTA is to detect gravitational waves using an array of about 30 MSPs. IPTA reports:

“Using telescopes located around the world is important, because any single telescope can see (a particular) pulsar … for much less than twelve hours, depending on the observing site’s latitude. Thus, the telescopes “trade off” between one another – as the pulsar sets from the perspective of, say, the Parkes telescope in Australia, it rises from the perspective of the Lovell telescope in the UK.”

You’ll find more information on IPTA on their website at the following link:

http://www.ipta4gw.org

You can visit the NANOGrav website here:

http://nanograv.org

Continuous gravitational waves

On 10 April 2018, the Max Planck Institute for Gravitational Physics announced the formation of a permanent Max Planck Independent Research Group under the leadership of Dr. M. Alessandra Papa to search for continuous gravitational waves.  The primary goal of this research group is to make the first direct detection of gravitational waves from rapidly rotating neutron stars. You can read this announcement here:

http://www.aei.mpg.de/2236875/searchingcontinuouswaves

Generation of the weak, continuous gravitational waves depends on the neutron star having an asymmetry that would perturb the stars gravitational field as it rapidly rotates. The method for detecting these weak, continuous gravitational waves was not described in the Planck Institute announcement.

CMB – Cosmic microwave background

The CBM is believed to be an artifact of the Big Bang and could carry evidence of the primordial gravitational waves from that era.  Such evidence would be expected to stretch across broad areas of the observable universe.

The European Space Agency (ESA) developed the Planck space observatory to map the CMB in microwave and infrared frequencies at unprecedented levels of detail. The Planck spacecraft was launched on 14 May 2009 and operated until 23 October 2013.  In 2016, the ESA released the results of the Planck all-sky survey of the CBM, which revealed that the universe appears to be isotropic, at least at the resolution of the Planck space observatory.  Researchers found that the actual CMB shows only random noise and no signs of patterns.

Planck all-sky survey. Source; ESA / Planck Collaboration

You’ll find more information on the Planck mission in my 28 September 2016 post, “The Universe is Isotropic.”

You can access ESA’s Planck science team home page here:

https://www.cosmos.esa.int/web/planck/home

In summary

The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) website contains the following summary chart, which is an alternate view of the chart at the start of this article (from the Kip Thorne / Walter Issacson interview).  The NANOGrav chart provides a good perspective on the observational technologies that are opening windows into the broad spectrum of gravitational waves and their varied sources.

So, in an analogy to the optical spectrum and the range of colors we see every day, the primordial gravitational waves in the CBM would be at the “red” end of the gravitational wave spectrum. The much higher frequency gravitational waves seen by LIGO and VIRGO, from stellar-mass binary black hole coalescence and neutron star collisions, would be at the “violet” end of the gravitational wave spectrum. The LISA space-based interferometer will be looking in the “blue-green” range, while PTA observatories are looking in the “yellow-orange” range.

For more information on the current state of gravitational wave technology, you’ll find a good survey article by Davide Castelvecchia, entitled “Here Come the Waves,” in the 12 April 2018 issue of Nature, which you can read here:

https://www.nature.com/magazine-assets/d41586-018-04157-6/d41586-018-04157-6.pdf

 

 

Linking Gravitational Wave Detection to the Rest of the Observable Spectrum

The Laser Interferometer Gravitational-Wave Observatory (LIGO) in the U.S. reported the first ever detection of gravitational waves on 14 September 2015 and, to date, has reported three confirmed detections of gravitational waves originating from black hole coalescence events. These events and their corresponding LIGO press releases are listed below.

  • GW150914, 14 September 2015

https://www.ligo.caltech.edu/page/press-release-gw150914

  • GW151226, 26 December 2015

https://www.ligo.caltech.edu/page/press-release-gw151226

  • GW170104, 4 January 2017

https://www.ligo.caltech.edu/page/press-release-gw170104

The following figure illustrates how these black hole coalescence events compare to our knowledge of the size of black holes based on X-ray observations. The LIGO team explained:

“LIGO has discovered a new population of black holes with masses that are larger than what had been seen before with X-ray studies alone (purple). The three confirmed detections by LIGO (GW150914, GW151226, GW170104), and one lower-confidence detection (LVT151012), point to a population of stellar-mass binary black holes that, once merged, are larger than 20 solar masses—larger than what was known before.”

Image credit: LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet)

On 1 August 2017, the Advanced VIRGO detector at the European Gravitational Observatory (EGO) in Cascina, Italy (near Pisa) became operational, using wire suspensions for its interferometer mirrors instead of the fragile glass fiber suspensions that had been delaying startup of this detector.

On 17 August 2017, the LIGO – VIRGO team reported the detection of gravitational waves from a new source; a collision of two neutron stars. In comparison to black holes, neutron stars are low-mass objects, yet the neutron star collision was able to generate gravitational waves that were strong enough and in the detection frequency range of the LIGO and VIRGO. You’ll find the LIGO press release for that event, GW170817, at the following link.

https://www.ligo.caltech.edu/page/press-release-gw170817

The following figure from this press release illustrates the limits of localizing the source of a gravitational wave using the gravitational wave detectors themselves. The localization of GW180817 was much better than the previous gravitational wave detections because the detection was made by both LIGO and VIRGO, which have different views of the sky and a very long baseline, allowing coarse triangulation of the source.

Gravitational wave sky map. Credit__LIGO_Virgo_NASA_Leo_Singer__Axel_Melli

Unlike the previous gravitational wave detections from black hole coalescence, the neutron star collision that produced GW180817 also produced other observable phenomena. Gravitational waves were observed by LIGO and VIRGO, allowing coarse localization to about 31 square degrees in the sky and determination of the time of the event. The source of a two-second gamma ray burst observed at the same time by the Fermi and INTEGRAL gamma ray space telescopes (in Earth orbit) overlapped with the region of the sky identified by LIGO and VIRGO. An optical transient (the afterglow from the event) in that overlap region was first observed hours later by the 1 meter (40 inch) Swope Telescope on Cerro Las Campanas in Chile. The results of this localization process is shown below and is described in more detail in the following LIGO press release:

https://www.ligo.caltech.edu/news/ligo20171016

The sky map created by LIGO-Virgo (green) showing the possible location of the source of gravitational waves, compared with regions containing the location of the gamma ray burst source from Fermi (purple) and INTEGRAL (grey). The inset shows the actual position of the galaxy (orange star) containing the “optical transient” that resulted from the merger of two neutron stars (Credit: NASA/ESO)

The specific source initially was identified optically as a brilliant blue dot that appeared to be in a giant elliptical galaxy. A multi-spectral “afterglow” persisted at the source for several weeks, during which time the source became a dim red point if light. Many observatories were involved in detailed observations in the optical and infra-red ranges of the spectrum.

Important findings relate to the formation of large quantities of heavy elements (i.e., gold to uranium) in the aftermath of this event, which is known as a “kilonova.” This class of events likely plays an important role in seeding the universe with the heaviest elements, which are not formed in ordinary stars or novae. You’ll find more details on this matter in Lee Billing’s article, “Gravitational Wave Astronomers Hit the Mother Lode,” on the Scientific American website at the following link:

https://www.scientificamerican.com/article/gravitational-wave-astronomers-hit-mother-lode1/

The ability to localize gravitational wave sources will improve as additional gravitational wave detectors become operational and capabilities of existing detectors continue to be improved. The current status of worldwide gravitational wave detector deployment is shown in the following figure.

Source: LIGO

The ability to take advantage of “multi-messenger” (multi-spectral) observations will depend on the type of event and timely cueing of observatories worldwide and in orbit. The success of the GW170817 detection and subsequent multi-spectral observations of “kilonova” demonstrates the rich scientific potential for such coordinated observations

 

Perspective on the Detection of Gravitational Waves

On 14 September 2015, the U.S. Laser Interferometer Gravitational-Wave Observatory (LIGO) became the first observatory to detect gravitational waves. With two separate detector sites (Livingston, Louisiana, and Hanford, Washington) LIGO was able to define an area of space from which the gravitational waves, dubbed GW150914, are likely to have originated, but was not able to pinpoint the source of the waves. See my 11 February 2016 post, “NSF and LIGO Team Announce First Detection of Gravitational Waves,” for a summary of this milestone event.

You’ll find a good overview on the design and operation of LIGO and similar laser interferometer gravity wave detectors in the short (9:06) Veratisium video, “The Absurdity of Detecting Gravitational Waves,” at the following link:

https://www.youtube.com/watch?v=iphcyNWFD10

The LIGO team reports that the Advanced LIGO detector is optimized for “a range of frequencies from 30 Hz to several kHz, which covers the frequencies of gravitational waves emitted during the late inspiral, merger, and ringdown of stellar-mass binary black holes.”

First observing run (O1) of the Advanced LIGO detector

The LIGO team defines O1 as starting on 12 September 2015 and ending on 19 January 2016. During that period, the LIGO team reported that it had, “unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ,” and also identified a third possible signal, LVT151012. The following figure shows the time evolution of the respective gravitational wave signals from when they enter the LIGO detectors’ sensitive band at 30 Hz.

LIGO GW signals screenshot

Source: B. P. Abbot et al., PHYS. REV. X 6, 041015 (2016)

The second detection of gravitational waves, GW151226, occurred on 26 December 2015. You’ll find the 16 June 2016 LIGO press release for this event at the following link:

https://www.ligo.caltech.edu/news/ligo20160615

At the following link, you can view a video showing a simulation of GW151226, starting at a frequency of 35 Hz and continuing through the last 55 gravitational-wave cycles before the binary black holes merge:

https://www.ligo.caltech.edu/video/ligo20160615v3

GW151226 simularion screenshotSource: Max Planck Institute for Gravitational Physics/ Simulating eXtreme Spacetime (SXS) project

In their GW151226 press release, the LIGO team goes out on a limb and makes the following estimate:

“….we can now start to estimate the rate of black hole coalescences in the Universe based not on theory, but on real observations. Of course with just a few signals, our estimate has big uncertainties, but our best right now is somewhere between 9 and 240 binary black hole coalescences per cubic Gigaparsec per year, or about one every 10 years in a volume a trillion times the volume of the Milky Way galaxy!”

More details on the GW151226 detection are available in the paper “GW151266: Observation of Gravitational Waves from a 22-Solar Mass Black Hole Coalescence,” at the following link:

https://dcc.ligo.org/public/0124/P151226/013/LIGO-P151226_Detection_of_GW151226.pdf

LIGO releases its data to the public. Analyses of the LIGO public data already are yielding puzzling results. In December 2016, researchers reported finding “echoes” in the gravitational wave signals detected by LIGO. If further analysis indicates that the “echoes” are real, they may indicate a breakdown of Einstein’s general theory of relativity at or near the “edge” of a black hole. You can read Zeeya Marali’s 9 December 2016 article, “LIGO black hole echoes hint at general relativity breakdown,” at the following link:

http://www.nature.com/news/ligo-black-hole-echoes-hint-at-general-relativity-breakdown-1.21135

Second observing run (O2) of the Advanced LIGO detector is in progress now

Following a 10-month period when they were off-line for modifications, the Advanced LIGO detectors returned to operation on 30 November 2016 with a 10% improvement in the sensitivity of their interferometers. The LIGO team intends to further improve this sensitivity by a factor of two during the next few years.

VIRGO will add the capability to triangulate the source of gravitational waves

In my 16 December 2015 post, “100th Anniversary of Einstein’s General Theory of Relativity and the Advent of a New Generation of Gravity Wave Detectors,” I reported on other international laser interferometer gravitational wave detectors. The LIGO team has established a close collaboration with their peers at the European Gravitational Observatory, which is located near Pisa, Italy. Their upgraded detector, VIRGO, in collaboration with the two LIGO detectors, is expected to provide the capability to triangulate gravitational wave sources. With better location information on the source of gravitational waves, other observatories can be promptly notified to join the search using other types of detectors (i.e., optical, infrared and radio telescopes).

VIRGO is expected to become operational in 2017, but technical problems, primarily with the mirror suspension system, may delay startup. You’ll find a 16 February 2017 article on the current status of VIRGO at the following link:

http://www.sciencemag.org/news/2017/02/european-gravitational-wave-detector-falters

Perspective on gravitational wave detection

Lyncean member Dave Groce recommends the excellent video of an interview of Caltech Professor Kip Thorne (one of the founders of LIGO) by “Einstein” biographer Walter Issacson. This 2 November 2016 video provides a great perspective on LIGO’s first detection of gravitational waves and on the development of gravitational wave detection capabilities. You’ll find this long (51:52) but very worthwhile video at the following link:

https://www.youtube.com/watch?v=mDFF27Nr-EU

Dr. Thorne noted that, at the extremely high sensitivity of the Advanced LIGO detectors, we are beginning to see the effects of quantum fluctuations in “human sized objects,” in particular, the 40 kg (88.2 pound) mirrors in the LIGO interferometers. In each mirror, the center of mass (the average position of all the mass in the mirror) fluctuates due to quantum physics at just the level of the Advanced LIGO noise.

In the interview, Dr. Thorne also discusses several new observatories that will be become available in the following decades to expand the spectrum of gravitational waves that can be detected. These are shown in the following diagram.

Spectrum for gravitational wave detection screenshotSource: screenshot from Kip Thorne / Walter Issacson interview

  •  LISA = Laser Interferometer Space Antenna
  • PTA = Pulsar Timing Array
  • CMB = Cosmic microwave background

See my 27 September 2016 post, “Space-based Gravity Wave Detection System to be Deployed by ESA,” for additional information on LISA.

Clearly, we’re just at the dawn of gravitational wave detection and analysis. With the advent of new and upgraded gravitational wave observatories during the next decade, there will be tremendous challenges to align theories with real data.   Through this process, we’ll get a much better understanding of our Universe.

 

 

100th Anniversary of Einstein’s General Theory of Relativity and the Advent of a New Generation of Gravity Wave Detectors

One hundred years ago, Albert Einstein presented his General Theory of Relativity in November 1915, at the Prussian Academy of Science. Happy Anniversary, Dr. Einstein!

Today, general relativity is being tested with unprecedented accuracy with a new generation of gravity-wave “telescopes” in the U.S., Italy, Germany, and Japan. All are attempting to directly detect gravity waves, which are the long-predicted quakes in space-time arising from cataclysmic cosmic sources.

The status of four gravity-wave telescopes is summarized below.

USA: Laser Interferometer Gravitational-Wave Observatory (LIGO)

LIGO is a multi-kilometer-scale gravitational wave detector that uses laser interferometry to, hopefully, measure the minute ripples in space-time caused by passing gravitational waves. LIGO consists of two widely separated interferometers within the United States; one in Hanford, WA and the other in Livingston, LA. These facilities are operated in unison to detect gravitational waves. The Livingston and Hanford LIGO sites are shown in the following photos (Hanford above, Livingston below):

ligo-hanford-aerial-02Source LIGO Caltechligo-livingston-aerial-03Source: LIGO Caltech

LIGO is operated by Caltech and MIT and is supported by the National Academy of Sciences. For more information, visit the LIGO website at the following link:

https://ligo.caltech.edu/page/about

Basically, LIGO is similar to the traditional interferometer used in 1887 in the famous Michelson-Morley experiment (https://en.wikipedia.org/wiki/Michelson–Morley_experiment). However, the LIGO interferometer incorporates novel features to greatly increase its sensitivity. The basic arrangement of the interferometer is shown in the following diagram.

LIGO experiment setupSource: LIGO Caltech

Each leg of the interferometer has a physical length of 4 km and is a resonant Fabry-Perot cavity that uses a complex set of mirrors to extend the effective arm length by a factor of 400 to 1,600 km.

On 18 September 2015, the first official “observing run” using LIGO’s advanced detectors began. This “observing run” is planned to last three months. LIGO’s advanced detectors are already three times more sensitive than Initial LIGO was by the end of its observational lifetime in 2007. You can read about this milestone event at the following link:

https://ligo.caltech.edu/news/ligo20150918

You also can find much more information on the LIGO Scientific Collaboration (LSC) at the following link:

http://www.ligo.org

Italy: VIRGO

VIRGO is installed near Pisa, Italy, at the site of the European Gravitational Observatory (http://www.ego-gw.it/public/virgo/virgo.aspx). VIRGO is intended to directly observe gravitational waves using a Michelson interferometer with arms that are 3 km long, with resonant Fabry-Perot cavities that increase the effective arm length by a factor of 50 to 150 km. The initial version of VIRGO operated from 2007 to 2011 and the facility currently is being upgraded with a new, more sensitive detector. VIRGO is expected to return to operation in 2018.

You can find much more information on VIRGO at the following link:

http://www.virgo-gw.eu

Germany: GEO600

GEO600 is installed near Hanover, Germany. It, too, uses a Michelson interferometer with arms that are 600 meters long, with resonant Fabry-Perot cavities that double the effective arm length to 1,200 meters.

You can find much more information on the GEO600 portal at the following link:

http://www.geo600.org

Japan: KAGRA Large-scale Cryogenic Gravitational Wave Telescope

The KAGRA telescope is installed deep underground, in tunnels of Kamioka mine, as shown in the following diagram.

img_abt_lcgtSource: KAGARA

Like the other facilities described previously, KAGRA is a Michelson interferometer with resonant Fabry-Perot cavities. The physical length of each arm is of 3 km (1.9 mi). KAGRA is expected to be in operation in 2018.

You can find much more information on KAGARA at the following links:

http://www.astro.umd.edu/~miller/Compact/lcgt.pdf

and,

http://gwcenter.icrr.u-tokyo.ac.jp/en/