Category Archives: All Posts

Phoenix Makes Its First Flight With Variable Buoyancy Propulsion. What’s Old is New Again!

The Phoenix Unmanned Aerial Vehicle (UAV) is a small, autonomous airship designed to serve as a very long endurance, high-altitude “atmospheric satellite” that is capable of station keeping using an innovative variable buoyancy propulsion system.  The UAV is intended for use in telecommunications and a range of other civil and military applications.

Phoenix development is being lead by a consortium of UK universities, businesses, and innovation centers, with a distribution of roles and responsibilities as shown in the following graphic.

Source:  https://phoenixuas.co.uk

This project runs for three years. It is one of several projects supported the UK’s Department for Business, Energy & Industrial Strategy (BEIS), through the Aerospace Technology Institute (ATI) and Innovate UK, to invest in “research and technology projects to deliver world leading aerospace technologies in the UK.”

The Phoenix project website is here: https://phoenixuas.co.uk

The Phoenix UAV is a small, variable buoyancy airship measuring 15 meters (49 feet) long, with a wingspan of 10.5 meters (34 feet).  The UAV’s teardrop-shaped fuselage is constructed from a Vectran fabric, with short wings and a cruciform tail made of carbon fiber composite material. Thin film solar panels on the wing and horizontal stabilizer surfaces generate electric power for the UAV’s systems and to charge an onboard battery that provides continuous power at night and during inclement weather.

Source:  https://phoenixuas.co.uk
Source:  https://phoenixuas.co.uk

The fuselage contains 120 cubic meters (4,238 cubic feet) of helium lifting gas (hydrogen is an alternative), a supply of lifting gas, and a separate inflatable 6 cubic meter (212 cubic feet) cell containing heavier air.  I would expect that the Phoenix is ballasted for near neutral buoyancy so that the control span of the buoyancy control system can produce both positive and negative buoyancy.

To increase buoyancy, air in the inflatable cell is released to the atmosphere via a vent in the tail.  If needed, lifting gas can be released to the gas envelope to gain positive buoyancy.  As the lighter-than-air Phoenix gains altitude, the aerodynamic surfaces generate forward momentum, propelling the UAV forward during the unpowered climb.  

At the top of the climb, buoyancy is decreased by pumping outside air into the inflatable cell, increasing the gross weight of the UAV. As the now heavier-than-air Phoenix enters an unpowered dive, the aerodynamic surfaces continue generating forward momentum to propel the UAV.

During an extended mission, the climb-dive cycle is repeated as often as needed to provide propulsion for controlling the position of the UAV.

First indoor flight.  Source: https://phoenixuas.co.uk

On 21 March 2019, the Phoenix UAV made its first successful flight indoors, covering about 120 meters (394 feet) and becoming the world’s first large variable buoyancy powered autonomous UAV. Outdoor tests will be conducted after the UK Civil Aviation Authority certifies the UAV.  As currently configured the developers expect that Phoenix can operate at altitudes up to about 914 meters (3,000 feet).

You can watch a short video of the first flight here:

https://www.youtube.com/watch?v=jcqPvKfZjac

But was it the first ever flight of an airship using variable buoyancy propulsion?

No it wasn’t.  

Back in the 1860s, Dr. Solomon Andrews invented the directionally maneuverable, hydrogen-filled airship named Aereonthat used variable buoyancy and airflow around the airship’s gas envelope to provide propulsion without an engine.  The gas envelope on the original Aereon airship consisted of three side-by-side, cigar-shaped balloons, each with seven internal cells containing the hydrogen lifting gas. The balloons formed a gas envelope measuring 80 feet (24.4 meters) long and 13 feet (4 meters) wide. 

  • Buoyancy of the airship was controlled by venting some hydrogen lift gas or dropping some sand ballast.  
  • The angle-of-attack (pitch angle) of the gas envelope was controlled by moving the center of gravity of the gondola (i.e., by moving people in the gondola fore and aft as needed)
  • Propulsive force was generated by alternating between positive buoyancy (lighter-than-air) flight and negative buoyancy (heavier-than-air) flight, and by coordinating the pitch angle of the gas envelope. 
    • During a buoyant ascent, the pitch angle was adjusted to as much as 15 degrees up.  Air flow along the top surface of the envelope moved from bow to stern and drove the airship forward.   The airship can continue to ascend until it reaches its “pressure altitude” where the decreasing atmospheric air density reduces airship buoyancy from positive to neutral.
    • During a semi-buoyant descent, the pitch angle was adjusted to as much as 15 degrees down.  Air flow along the bottom surface of the envelope moved from bow to stern and continued to drive the airship forward.
  • Direction was controlled by a rudder at the stern of the airship
Source:  Popular Science Monthly, January 1932

Andrews first flew Aereon over Perth Amboy, NJ on 1 June 1863 and flew at least three times more.  With Aereon, he demonstrated the ability to fly in any direction, including against the wind, make broad 360 degree turns, and navigate back to and land at his starting point.  Aereon’s gondola could carry the pilot and three passengers.

On 5 July 1864, the US Patent Office issued Patent # 43,449 to Solomon Andrews for his invention of a balloon that was capable of directed flight and could even be flown against the wind.  You can read the patent here: https://patents.google.com/patent/US43449

Lithograph of Solomon Andrews’s first airship “Aereon”
Source: United States Library of Congress’s Prints and Photographs division,
digital ID cph.3b01438.

Andrews’ second airship, Aereon 2, had a different gas envelope design, described as “a flattened lemon, sharply pointed at both ends.”  Aereon 2 also used a different approach for controlling buoyancy.  The new approach used a complex set of ropes and pulleys to squeeze or release external pressure on the hydrogen gas bags, thereby changing their volume and how much air was being displaced.  Aereon 2 flew over New York City on 25 May and 5 June 1866. The second trip ended up about 30 miles away with a landing in Oyster Bay, Long Island. This was Andrews’ last flight. 

Source: Skinner Auctioneers

Andrews organized the Aerial Navigation Company, which was chartered in November 1865 for “the transportation of passengers, merchandise and other matter from place to place.”  The firm intended to build commercial airships and establish regular airship service between New York and Philadelphia.  During the post-Civil War economic crisis, many banks failed and Aerial Navigation Co. went bankrupt, ending the plans for the first commercial passenger and freight air service in the world.

Source: Worthpoint

What’s old is new again!

In the past two decades, winged underwater gliders implementing Andrews’ basic variable buoyance propulsion principle have been developed.  See the 2001 article, “Autonomous Buoyancy-driven Underwater Gliders,” which you can read here:

https://pdfs.semanticscholar.org/8b21/111dee323c13a57079767b4973ce30bc6c24.pdf

Now, the UK Phoenix team has demonstrated variable buoyancy propulsion in a small, unmanned airship, 156 years after Solomon Andrews first flew the much larger Aeron with passengers in Perth Amboy, NJ.

Additional resources on the Phoenix UAV

Additional resources on Solomon Andrews and the Aereon

Paul Allen’s Stratolaunch Aircraft Makes its First Flight, but With an Uncertain Business Plan

Background

The firm Orbital ATK (formerly Orbital Sciences Corporation) was the first to develop a commercial, air-launched rocket capable of placing payloads into Earth orbit.  Initial tests of their modest-size Pegasus launch vehicle were made in 1990 from the NASA B-52 that previously had been used as the “mothership” for the X-15 experimental manned space plane and many other experimental vehicles.

Since 1994, Orbital ATK has been using a specially modified civilian Lockheed L-1011 TriStar, a former airliner renamed Stargazer, as a mothership to carry a Pegasus launch vehicle to high altitude, where the rocket is released to fly a variety of missions, including carrying satellites into orbit.  With a Pegasus XL  as its payload (launch vehicle + satellite), Stargazer is lifting up to 23,130 kg (50,990 pounds) to a launch point at an altitude of about 12.2 km (40,000 feet).

Orbital ATK’s Pegasus XL rocket released from Stargazer.  
Source: NASA / http://mediaarchive.ksc.nasa.gov

You can watch a 2015 video celebrating 25 years of Orbital ATK’s Pegasus air-launched rocket at the following link: https://www.youtube.com/watch?v=0L47cpXTzQU

Paul Allen’s firm Stratolaunch Systems Corporation (https://www.stratolaunch.com) was founded in 2011 to take this air-launch concept to a new level with their giant, twin-fuselage, six-engine Stratolaunch carrier aircraft.  The aircraft has a wingspan of 385 feet (117 m), which is the greatest of any aircraft ever built, a length of 238 feet (72.5 m), and a height of 50 feet (15.2 m) to the top of the vertical tails. The empty weight of the aircraft is about 500,000 pounds (226,796 kg).  It is designed for a maximum takeoff weight of 1,300,000 pounds (589,670 kg), leaving about 550,000 pounds (249,486 kg) for its payload and the balance for fuel and crew.  It will be able to carry multiple launch vehicles on a single mission to a launch point at an altitude of about 35,000 feet (10,700 m).  A mission profile for the Stratolaunch aircraft is shown in the following diagram.

Typical air-launch mission profile. Source: Stratolaunch Systems

Stratolaunch rollout – 2017

Built by Scaled Composites, the Stratolaunch aircraft was unveiled on 31 May 2017 when it was rolled out at the Mojave Air and Space Port in Mojave, CA.  Following is a series of photos from Stratolaunch Systems showing the rollout.

Stratolaunch ground tests – 2017 to 2019

Ground testing of the aircraft systems started after rollout. By mid-September 2017, the first phase of engine testing was completed, with all six Pratt & Whitney PW4000 turbofan engines operating for the first time.  The first low-speed ground tests conducted in December 2017 reached a modest speed of 25 knot (46 kph).  By January 2019, the high-speed taxi tests had reached a speed of about 119 knots (220 kph) with the nose wheel was off the runway, almost ready for lift off. Following is a series of photos from Stratolaunch Systems showing the taxi tests.

Stratolaunch first flight

The Stratolaunch aircraft, named Roc, made an unannounced first flight from the Mojave Air & Space Port on 13 April 2019.  The aircraft stayed aloft for 2.5 hours, reached a peak altitude of 17,000 feet (5,180 m) and a top speed of 189 mph (304 kph). Following is a series of photos from Stratolaunch Systems showing the Stratolaunch aircraft during its first flight.

Stratolaunch posted an impressive short video of the first flight, which you can view here:

Stratolaunch family of launch vehicles: ambitious plans, but subject to change

In August 2018, Stratolaunch announced its ambitious launch vehicle development plans, which included the family of launch vehicles shown in the following graphic:

  • Up to three Pegasus XL launch vehicles from Northrop Grumman Innovation Systems (formerly Orbital ATK) can be carried on a single Stratolaunch flight. Each Pegasus XL is capable of placing up to 370 kg (816 lb) into a low Earth orbit (LEO, 400 km / 249 mile circular orbit).
  • Medium Launch Vehicle (MLV) capable of placing up to 3,400 kg (7,496 lb) into LEO and intended for short satellite integration timelines, affordable launch and flexible launch profiles.  MLV was under development and first flight was planned for 2022.
  • Medium Launch Vehicle – Heavy, which uses three MLV cores in its first stage. That vehicle would be able to place 6,000 kg (13,228 lb) into LEO.  MLV-Heavy was in the early development stage.
  • A fully reusable space plane named Black Ice, initially intended for orbital cargo delivery and return, with a possible follow-on variant for transporting astronauts to and from orbit.  The space plane was a design study.

Stratolaunch was developing a 200,000 pound thrust, high-performance, liquid fuel hydrogen-oxygen rocket engine, known as the “PGA engine”, for use in their family of launch vehicles.  Additive manufacturing was being widely used to enable rapid prototyping, development and manufacturing.   Successful tests of a 100% additive manufactured major subsystem called the hydrogen preburner were conducted in November 2018.

Stratolaunch Systems planned family of launch vehicles announced in August 2018.
Source: Stratolaunch Systems

After Paul Allen’s death on 15 October 2018, the focus of Stratolaunch Corp was greatly revised. On 18 January 2019, the company announced that it was ending work on its own family of launch vehicles and the PGA rocket engine. The firm announced, “We are streamlining operations, focusing on the aircraft and our ability to support a demonstration launch of the Northrop Grumman Pegasus XL air-launch vehicle.”    

You’ll find an article describing Stratolaunch Systems’ frequently changing launch vehicle plans in an article on the SpaceNews website here:

https://spacenews.com/stratolaunch-abandons-launch-vehicle-program/

What is the future for Stratolaunch?

With only the Pegasus XL as a launch vehicle, and Northrop Grumman having their own Stargazer carrier aircraft for the Pegasus XL, the business case for the Stratolaunch aircraft has been greatly weakened.  Air launch certainly offers a great deal of flexibility for launching small satellites. However, it appears that the newest generation of small orbital launch vehicles, like Electron (Rocket Lab, New Zealand) and Prime (Orbix, UK) will be able to offer similar launch services at lower cost.  Electron is operational now, and Prime is expected to enter service in 2021.  

In a cost competitive launch services market, Stratolaunch does not seem to have an advantage with only the Pegasus XL in its launch vehicle inventory.  Hopefully, they have something else up their sleeve that will take advantage of the remarkable capabilities of the Stratolaunch carrier aircraft.

Stratolaunch’s main competition:  The Northrop Grumman Stargazer at the Mojave Air and Space Port in January 2019, available for its next Pegasus XL launch mission.  Source: Author’s photo

JASON and NRAC Contracts Cancelled by the Pentagon

JASON is an independent advisory panel of elite scientists that was created in 1960 to address a wide range of scientific and technical issues, primarily for the U.S. military. Originally, the JASON panel had about 20 members, known informally as Jasons, increasing to about 40 members by the 1970s.  JASON maintains its independence by requiring that new members be selected by its existing members rather than by external sponsors.  

JASON is a very controversial organization with a very low public profile.  For a good introduction to JASON, I recommend Ann Finkbeiner’s 2006 book, “The Jasons: The Secret History of Science’s Postwar Elite,”  which is available from Amazon and other booksellers. You can watch an hour-long video created by Microsoft Research with Ann Finkbeiner providing an excellent narrative overview (no Powerpoint slides) on JASON here:

https://www.youtube.com/watch?v=FV1TBiwdZeg

Ann Finkbeiner notes: “Working in secrecy to solve highly classified problems for the Department of Defense, CIA, and NSA is an elite group of scientific advisors who provide the government with analyses on defense and arms control and they call themselves JASON.  Named for the hero in Jason and the Argonauts, the group grew out of the Manhattan Project and counts as its members scientists such as Freeman Dyson and Murray Gell-Mann.  Of the roughly one hundred Jasons over time, 43 have been elected to the National Academy of Sciences, eight have won MacArthur awards, one a Field’s Medal, and 11 have won Nobel Prizes.  Its members have gathered every summer since 1960, working in absolute secrecy and with unparalleled freedom.  The Jasons’ work poses vital questions: what role should the government play in scientific research? At what point is the inventor accountable for the hazards of the invention?”

You’ll find a list of JASON research topics compiled on Wikipedia here:

https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/JASON_(advisory_group).html

Most of the resulting JASON reports are classified.  You’ll find a list of unclassified JASON reports (and links) on the Federation of American Scientists (FAS) website at the following link:

https://fas.org/irp/agency/dod/jason/

Since the late 1970s, the JASONs have been assigned tasks and been funded via Indefinite Delivery / Indefinite Quantity (IDIQ) contracts managed by MITRE Corporation.  The Office of the Secretary of Defense (OSD) issued MITRE’s most recent five-year IDIQ contract for managing JASON tasking and funding.   Task Orders are issued under the main IDIQ contract and the actual work is performed according to the individual task orders. The IDIQ contract structure broadly allows government agencies to commission a JASON study and fund it via a new task order.  MITRE’s IDIQ contract expired on 31 March 2019.  A follow-on IDIQ contract was in the works, but OSD cancelled that solicitation on short notice on 28 March 2019. 

On 10 April 2019, the article, “Pentagon Cancels Contract for JASON Advisory Panel,” written by Steven Aftergood, was posted on the FAS website at the following link:

https://fas.org/blogs/secrecy/2019/04/pentagon-jason/?utm_source=FAS+General&utm_campaign=495e653a5b-EMAIL_CAMPAIGN_2017_02_21_COPY_01&utm_medium=email&utm_term=0_56a7496199-495e653a5b-222204421

FAS speculated that, “The Pentagon move to cancel the JASON contract appears to be part of a larger trend by federal agencies to limit independent scientific and technical advice.”  This trend appears to include the Naval Research Advisory Committee (NRAC), which is the Navy counterpart to the Army Science Board and the Air Force Scientific Advisory Board. 

On 5 April 2019, Steve Aftergood reported that, “This week the U.S. Navy abruptly terminated its own scientific advisory group, depriving the service of a source of internal critique and evaluation. The Naval Research Advisory Committee (NRAC) was established by legislation in 1946 and provided science and technology advice to the Navy for the past 73 years. Now it’s gone.  The decision to disestablish the Committee was announced in a March 29 Federal Register notice.”  You can read this report on the FAS website here:

https://fas.org/blogs/secrecy/2019/04/nrac-terminated/?utm_source=FAS+General&utm_campaign=495e653a5b-EMAIL_CAMPAIGN_2017_02_21_COPY_01&utm_medium=email&utm_term=0_56a7496199-495e653a5b-222204421

You can get an understanding of NRAC’s advisory role by visiting their website, which is still online at the following link:

https://www.nrac.navy.mil

NRAC published reports from 1988 are available online here:

https://www.nrac.navy.mil/reports.asp

Efforts are underway on several fronts to attempt to restore funding for JASON and NRAC.  Hopefully funding can be restored and these independent advisory groups can continue providing important scientific and technical advice to the U.S. government.

Additional resources related to JASON:

  • Joel Shurkin, “True Genius: The Life and Work of Richard Garwin, the Most Influential Scientist You’ve Never Heard of,” Prometheus Books, 21 February 2017      

Lyncean link

At meeting #65 of the Lyncean Group in August 2011, the subject of our presentation was “Experience with the JASONs.”  See more at the following link: https://lynceans.org/talk-65-82411/

Update 26 April 2019

It appears that the Department of Energy’s National Nuclear Security Administration (NNSA)  intends to take over the contract for the Jason Group. See the article, “After Pentagon Ends Contract, Top-Secret Scientists Group Vows To Carry On,” on the NPR website at the following link:

https://www.npr.org/2019/04/25/717225118/after-pentagon-ends-contract-top-secret-scientists-group-vows-to-carry-on

The Event Horizon Telescope Team has Produced the First Image Showing the Shadow of a Black Hole

The first image of a black hole was released today at a press conference in Washington D.C. held by the Event Horizon Telescope (EHT) team and the National Science Foundation (NSF).  The subject of the image is the supermassive black hole located near the center of the Messier 87 (M87) galaxy.  This black hole is about 55 million light years from Earth and is estimated to have a mass 6.5 billion times greater than our Sun.  The image shows a glowing circular emission ring surrounding the dark region (shadow) containing the black hole.  The brightest part of the image also may have captured a bright relativistic jet of plasma that appears to be streaming away from the black hole at nearly the speed of light, beaming generally in the direction of Earth.

The first ever image showing the shadow of a black hole (M87), which remains unseen at the center of the dark circular region.
Source:The EHT Collaboration, et al.

The EHT is not one physical telescope.  Rather, it an array of millimeter and sub-millimeter wavelength radio telescopes located around the world.  The following map shows the eight telescopes that participated in the 2017 observations of M87.  Three additional telescopes joined the EHT array in 2018 and later.  

The EHT array as used for the April 2017 observations.  
Source: The EHT Collaboration, et al.

All of the EHT telescopes are used on a non-dedicated basis by an EHT team of more than 200 researchers during a limited annual observing cycle.  The image of the M87 black hole was created from observations made during a one week period in April 2017.

The long baselines between the individual radio telescopes give the “synthetic” EHT the resolving power of a physical radio telescope with a diameter that is approximately equal to the diameter of the Earth. A technique called very long-baseline interferometry (VLBI) is used to combine the data from the individual telescopes to synthesize the image of a black hole. EHT Director, Shep Doeleman, referred to VLBI as “the ultimate in delayed gratification among astronomers.” The magnifying power of the EHT becomes real only when the data from all of the telescopes are brought together and the data are properly combined and processed. This takes time.

At a nominal operating wavelength of about 1.3 mm (frequency of 230 GHz), EHT angular resolution is about 25 microarcseconds (μas), which is sufficient to resolve nearby supermassive black hole candidates on scales that correspond to their event horizons.  The EHT team reports that the M87 bright emission disk subtends an angle of 42 ± 3 microarcseconds.

For comparison, the resolution of a human eye in visible light is about 60 arcseconds (1/60thof a degree; there are 3,600 arcseconds in one degree) and the 2.4-meter diameter Hubble Space Telescope has a resolution of about 0.05 arcseconds (50,000 microarcseconds).

You can read five open access papers on the first M87 Event Horizon Telescope results written by the EHT team and published on 10 April 2019 in the Astrophysical Journal Letters here:

You’ll find more information on the Event Horizon Telescope website, here:  https://eventhorizontelescope.org/about

There are ongoing efforts to improve the performance of the EHT.  Key areas for improvement include:

  • Operating the telescopes in the array at a shorter wavelength of 0.87 mm (frequency of 345 GHz) will improve angular resolution by about 40%.  This is expected to start after 2020 and take 3 – 5 years to deploy.
  • Adding terrestrial telescopes to the array will improve image fidelity and lengthen some baselines to improve angular resolution.
  • Collecting data over wider bandwidths (several frequencies)
  • Enabling dynamic imaging of time-variable phenomena, which will be very useful for observing the dynamic black hole known as Sgr A* at the center of our Milky Way galaxy.
  • In the longer term, adding orbital radio telescopes to EHT will greatly expand the observation baselines and significantly improve angular resolution.

Congratulations to the EHT Collaboration for their extraordinary success in creating the first-ever image of a black hole shadow.

For more background information on the Event Horizon Telescope, see the following Lyncean post:

5 May 2019 Update:  Photo of the M87 galaxy released by NASA

On April 25, 2019, NASA released the following composite image showing the M87 galaxy, the position of the black hole and large relativistic jets of matter being ejected from the black hole.  These infrared images were made by NASA’s orbiting Spitzer Space Telescope.  

The M87 galaxy, with two expanded views, first showing the location of the black hole and two plasma jets (orange) at the center of M87, and second, the closeup EHT image of the black hole’s shadow.  
Source: NASA/JPL-Caltech/IPAC/Event Horizon Telescope


Israel Poised to Become the 4th Nation to Land a Spacecraft on the Moon

In my 6 August 2016 post, “Lunar Lander XCHALLENGE and Lunar XPrize are Paving the way for Commercial Lunar Missions,” I reported on the status of the Google Lunar XPrize, which was created in 2007 to “incentivize space entrepreneurs to create a new era of affordable access to the Moon and beyond,” and actually deliver payloads to the Moon.  In addition, the lunar payloads were tasked with moving 500 meters (1,640 feet) after landing and transmitting high-definition photos and video back to Earth. Any additional science data would be a plus.  In January 2018, after concluding that none of the remaining competitors could meet the extended 31 March 2018 deadline for landing on the Moon, the Google Lunar XPrize competition was cancelled, with the $30M in prizes remaining unclaimed. You can read this post here:

https://lynceans.org/all-posts/lunar-lander-xchallenge-and-lunar-xprize-are-paving-the-way-for-commercial-lunar-missions/

One of the competing Lunar XPrize teams was SpaceIL from Israel, which was developing a small lunar spacecraft named Beresheet (originally named Sparrow), that was designed to hitch a ride into an elliptical Earth orbit as a secondary payload on a SpaceX Falcon 9 commercial launch vehicle and then transfer itself to a lunar orbit and finally land on the Moon.  

The SpaceIL lunar landing program continued after cancellation of the Lunar XPrize competition.  You’ll find details on the SpaceIL lunar program here:

http://www.visit.spaceil.com

As completed by SpaceIL and Israel Aerospace Industries (IAI), the Beresheet spacecraft has a launch mass of 600 kg (1,323 pounds) and a landing mass of about 180 kg (397 pounds).  The lander carries imagers, a magnetometer, a laser retro-reflector array (LRA) provided by the U.S. National Aeronautics and Space Administration (NASA), and a time capsule of cultural and historical Israeli artifacts.

The Beresheet spacecraft.  Source:  by Abir Sultan/EPA-EFE

After landing on the Moon, the Beresheet spacecraft electronic systems are expected to remain operational only for a few days. The original Lunar XPrize plan to demonstrate mobility and move the spacecraft after landing on the Moon has been dropped.  The laser retro-reflectors will enable the spacecraft to serve as a fixed geographic reference point on the lunar surface long after the mission ends.While not designed for a long lunar surface mission, Beresheet is intended to demonstrate advances in technology that enable low-cost, privately-funded missions to another body in the solar system.  Beresheet was developed and constructed for about $100 million.  You’ll find more information on the Beresheet spacecraft here:

https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/beresheet-lunar-lander

Beresheet was launched from Cape Canaveral, FL on 21 Feb 2019 into an initial elliptical Geosynchronous Transfer Orbit (GTO) that was dictated by the requirements for the Falcon 9 booster’s primary payload. Once in GTO, Beresheet used its small rocket engine to gradually raise its orbit to a 400,000 km (248,548 mile) apogee to intersect the Moon’s circular orbit, and phase its orbit so the spacecraft passed close to the Moon and could maneuver into a transfer orbit and be captured by the Moon’s gravity.  This mission profile is illustrated below.

Source:  SpaceIL

You can watch a short video with an animation of this mission profile here:

On 4 April, SpaceIL tweeted: “Critical lunar orbit capture took place successfully. #Beresheet is now entering an elliptical course around the #moon, as we get closer to the historical landing #11.4″

After circularizing its lunar orbit, Beresheet is scheduled to land on the Moon on 11 April 2019.  NASA is providing communications support during the mission.

Artist’s concept of the Beresheet lander on the lunar surface.  
Source: Israel Aerospace Industries(IAI)

On 28 March, the X Prize founder and Executive Chairman Peter Diamand announced that, if the lunar landing is successful, the Foundation would award a $1 million “Moonshot Award” to Beresheet’s builders. Peter Diamand noted, “SpaceIL’s mission represents the democratization of space exploration.”

Best wishes to the SpaceIL team for a successful lunar landing.  If successful, Israel will become the 4thnation, after Russia (Soviet Union), USA and China to land spacecraft on the Moon.

Update 12 April 2019:  Beresheet spacecraft crashed during Moon landing attempt

The Beresheet spacecraft successfully initiated its descent from lunar orbit on 11 April 2019.  Initial telemetry indicated that the landing profile was proceeding as planned.

Beresheet status graphic during landing sequence.  
Source: IAI / SpaceIL
Photo taken from Beresheet during the descent, from an altitude of about 22 km. Source:  IAI / SpaceIL

Communications with the spacecraft was lost when Beresheet was about 489 feet (149 meters) above the moon’s surface.  Opher Doron, the general manager of IAI, reported during the live broadcast, “We had a failure in the spacecraft; we unfortunately have not managed to land successfully.” 

X Prize founder and Executive Chairman Peter Diamandis announced that SpaceIL and IAI will receive the $1 million Moonshot Award despite failing to make the planned soft landing on the Moon.

Update 14 May 2019:  Preliminary failure analysis

On 17 April 2019, SpaceIL announced that its preliminary failure analysis indicated that a software command uploaded to restart a failed inertial measuring unit (IMU) may have started a sequence of events that ultimately shut down the main engines prematurely during the landing attempt, resulting in the crash of the Beresheet spacecraft.

Morris Kahn, SpaceIL’s primary source of funding, pledged that the team will try again for a Moon landing with a new spacecraft dubbed “Beresheet 2.0,” which will incorporate lessons learned from the first lunar landing attempt.

For more information on the Beresheet mission, see The Planetary Society mission report at the following link:

http://www.planetary.org/explore/space-topics/space-missions/beresheet.html

Verizon became the first wireless carrier to deliver 5G service in the U.S.

On 3 April 2019, Verizon reported that it turned on its 5G networks in parts of Chicago and Minneapolis, becoming the first wireless carrier to deliver 5G service to U.S. customers with compatible wireless devices in selected urban areas.  In its initial 5G service, Verizon is offering an average data rate of 450 Mbps (Megabits per second), with plans to achieve higher speeds as the network rollout continues and service matures.  Much of the 5G hype has been on delivering data rates at or above 1 Gbps (Gigabits per second = 1,000 Megabits per second). 

In comparison, Verizon reports that it currently delivers 4G LTE service in 500 markets.  This service is “able to handle download speeds between 5 and 12 Mbps …. and upload speeds between 2 and 5 Mbps, with peak download speeds approaching 50 Mbps.”  Clearly, even Verizon’s initial 5G data rate is a big improvement over 4G LTE. 

At the present time, only one mobile phone works with Verizon’s initial 5G service: the Moto Z3 with an attachment called the 5G Moto Mod.  It is anticipated that the Samsung’s S10 5G smartphone will be the first all-new 5G mobile phone to hit the market, likely later this spring.  You’ll find details on this phone here:

https://www.samsung.com/us/mobile/galaxy-s10/

Other U.S. wireless carriers, including AT&T, Sprint and T-Mobile US, have announced that they plan to start delivering 5G service later in 2019.

5G technology standards

Wireless carriers and suppliers with a stake in 5G are engaged in the processes for developing international standards. However, with no firm 5G technology standard truly in place at this time, the market is still figuring out what 5G features and functionalities will be offered, how they will be delivered, and when they will be ready for commercial introduction.  The range of 5G functionalities being developed are shown in the following ITU diagram.

Range of 5G applications

Verizon’s initial 5G mobile phone promotion is focusing on data speed and low latency.

The primary 5G standards bodies involved in developing the international standards are the 3rd Generation Partnership Project (3GPP), the Internet Engineering Task Force (IETF), and the International Telecommunication Union (ITU).  A key international standard, 5G/IMT-2020, is expected to be issued in (as you might expect) 2020.  

You’ll find a good description of 5G technology by ITU in a February 2018 presentation, “Key features and requirements of 5G/IMT-2020 networks,” which you will find at the following link:

https://www.itu.int/en/ITU-D/Regional-Presence/ArabStates/Documents/events/2018/RDF/Workshop%20Presentations/Session1/5G-%20IMT2020-presentation-Marco-Carugi-final-reduced.pdf

DARPA Spectrum Collaboration Challenge 2 (SC2)

In my 6 June 2016 post, I reported on SC2, which eventually could benefit 5G service by:

 “…developing a new wireless paradigm of collaborative, local, real-time decision-making where radio networks will autonomously collaborate and reason about how to share the RF (radio frequency) spectrum.”

SC2 is continuing into 2019.  Fourteen teams have qualified for Phase 3 of the competition, which will culminate in the Spectrum Collaboration Challenge Championship Event, which will be held on 23 October 2019 in conjunction with the 2019 Mobile World Congress in Los Angeles, CA.  You can follow SC2 news here:

https://www.spectrumcollaborationchallenge.com/media/

If SC2 is successful and can be implemented commercially, it would enable more efficient use of the RF bandwidth assigned for use by 5G systems.

For more background information on 5G, see the following Lyncean posts:

Standby for a New Round of Gravitational Wave Detection

Since late August 2017, the US LIGO 0bservatories in Washington and Louisiana and the European Gravitational Observatory (EGO), Virgo, in Italy, have been off-line for updating and testing.  These gravitational wave observatories were set to start Observing Run 3 (O3) on 1 April 2019 and conduct continuous observations for one year.  All three of these gravitational wave observatories have improved sensitivities and are capable of “seeing” a larger volume of the universe than in Observing Run 2 (O2).

Later in 2019, the Japanese gravitational wave observatory, KAGRA, is expected to come online for the first time and join O3.  By 2024, a new gravitational wave observatory in India is expected to join the worldwide network.

On the advent of this next gravitational wave detection cycle, here’s is a brief summary of the status of worldwide gravitational wave observatories.

Advanced LIGO 

The following upgrades were implemented at the two LIGO observatories since Observing Run 2 (O2) concluded in 2017:

  • Laser power has been doubled, increasing the detectors’ sensitivity to gravitational waves.
  • Upgrades were made to LIGO’s mirrors at both locations, with five of eight mirrors being swapped out for better-performing versions.
  • Upgrades have been implemented to reduce levels of quantum noise. Quantum noise occurs due to random fluctuations of photons, which can lead to uncertainty in the measurements and can mask faint gravitational wave signals. By employing a technique called quantum “squeezing” (vacuum squeezing), researchers can shift the uncertainty in the laser light photons around, making their amplitudes less certain and their phases, or timing, more certain. The timing of photons is what is crucial for LIGO’s ability to detect gravitational waves.  This technique initially was developed for gravitational wave detectors at the Australian National University, and matured and routinely used since 2010 at the GEO600 gravitational wave detector in Hannover, Germany,

In comparison to its capabilities in 2017 during O2, the twin LIGO detectors have a combined increase in sensitivity of about 40%, more than doubling the volume of the observable universe.

You’ll find more news and information on the LIGO website at the following link:

https://www.ligo.caltech.edu/news

GEO600 

GEO600 is a modest-size laser interferometric gravitational wave detector (600 meter / 1,969 foot arms) located near Hannover, Germany. It was designed and is operated by the Max Planck Institute for Gravitational Physics, along with partners in the United Kingdom.

In mid-2010, GEO600 became the first gravitational wave detector to employ quantum “squeezing” (vacuum squeezing) and has since been testing it under operating conditions using two lasers: its standard laser, and a “squeezed-light” laser that just adds a few entangled photons per second but significantly improves the sensitivity of GEO600.  In a May 2013 paper entitled, “First Long-Term Application of Squeezed States of Light in a Gravitational Wave Observatory,” researchers reported the following results of operational tests in 2011 and 2012.

“During this time, squeezed vacuum was applied for 90.2% (205.2 days total) of the time that science-quality data were acquired with GEO600. A sensitivity increase from squeezed vacuum application was observed broadband above 400 Hz. The time average of gain in sensitivity was 26% (2.0 dB), determined in the frequency band from 3.7 to 4.0 kHz. This corresponds to a factor of 2 increase in the observed volume of the Universe for sources in the kHz region (e.g., supernovae, magnetars).”

The installed GEO600 squeezer (in the foreground) inside the GEO600 clean room together with the vacuum tanks (in the background).  
Source: http://www.geo600.org/15581/1-High-Tech

While GEO600 has conducted observations in coordination with LIGO and Virgo, GEO600 has not reported detecting gravitational waves. At high frequencies GEO600 sensitivity is limited by the available laser power. At the low frequency end, the sensitivity is limited by seismic ground motion.

You’ll find more information on GEO600 at the following link:

http://www.geo600.org/3020/About-GEO600

Advanced Virgo, the European Gravitational Observatory (EGO)

At Virgo, the following upgrades were implemented since Observing Run 2 (O2) concluded in 2017:

  • The steel wires used during O2 observation campaign to suspend the four main mirrors of the interferometer have been replaced.  The 42 kg (92.6 pound) mirrors now are suspended with thin fused-silica (glass) fibers, which are expected to increase the sensitivity in the low-medium frequency region.  The mirrors in Advanced LIGO have been suspended by similar fused-silica fibers since those two observatories went online in 2015.
  • A more powerful laser source has been installed, which should improve sensitivity at high frequencies. 
  • Quantum “squeezing” has been implemented in collaboration with the Albert Einstein Institute in Hannover, Germany.  This should improve the sensitivity at high frequencies.
Virgo mirror suspension with fused-silica fibers.  
Source: EGO/Virgo Collaboration/Perciballi

In comparison to its capabilities in 2017 during O2, Virgo sensitivity has been improved by a factor of about 2, increasing the volume of the observable universe by a factor of about 8.

You’ll find more information on Virgo at the following link:

http://www.virgo-gw.eu

Japan’s KAGRA 

KAGRA is a cryogenically-cooled laser interferometer gravitational wave detector that is sited in a deep underground cavern in Kamioka, Japan.  This gravitational wave observatory is being developed by the Institute for Cosmic Ray Research (ICRR) of the University of Tokyo.  The project website is at the following link:

https://gwcenter.icrr.u-tokyo.ac.jp/en/

One leg of the KAGRA interferometer.  
Source: ICRR, University of Tokyo

The cryogenic mirror cooling system is intended to cool the mirror surfaces to about 20° Kelvin (–253° Celsius) to minimize the motion of molecules (jitter) on the mirror surface and improve measurement sensitivity.   KAGRA’s deep underground site is expected to be “quieter” than the LIGO and VIRGO sites, which are on the surface and have experienced effects from nearby vehicles, weather and some animals.

The focus of work in 2018 was on pre-operational testing and commissioning of various systems and equipment at the KAGRA observatory. In December 2018, the KAGRA Scientific Congress reported that, “If our schedule is kept, we expect to join (LIGO and VIRGO in) the latter half of O3…”   You can follow the latest news from the KAGRA team here:

https://gwcenter.icrr.u-tokyo.ac.jp/en/category/latestnews

LIGO-India

IndIGO, the Indian Initiative in Gravitational-wave Observations, describes itself as an initiative to set up advanced experimental facilities, with appropriate theoretical and computational support, for a multi-institutional Indian national project in gravitational wave astronomy.  The IndIGO website provides a good overview of the status of efforts to deploy a gravitational wave detector in India.  Here’s the link:

http://www.gw-indigo.org/tiki-index.php?page=Welcome

On 22 January 2019, T. V. Padma reported on the Naturewebsite that India’s government had given “in-principle” approval for a LIGO gravitational wave observatory to be built in the western India state of Maharashtra. 

“India’s Department of Atomic Energy and its Department of Science and Technology signed a memorandum of understanding with the US National Science Foundation for the LIGO project in March 2016. Under the agreement, the LIGO Laboratory — which is operated by the California Institute of Technology (Caltech) in Pasadena and the Massachusetts Institute of Technology (MIT) in Cambridge — will provide the hardware for a complete LIGO interferometer in India, technical data on its design, as well as training and assistance with installation and commissioning for the supporting infrastructure. India will provide the site, the vacuum system and other infrastructure required to house and operate the interferometer — as well as all labor, materials and supplies for installation.”

India’s LIGO observatory is expected to cost about US$177 million.  Full funding is expected in 2020 and the observatory currently is planned for completion in 2024.  India’s Inter-University Centre for Astronomy and Astrophysics (IUCAA), also in Maharashtra  state, will lead the project’s gravitational-wave science and the new detector’s data analysis.

For T. V. Padma’s complete article, refer to: 

https://www.nature.com/articles/d41586-019-00184-z.

Spatial resolution of gravitational wave events

Using only the two US LIGO detectors, it is not possible to localize the source of gravitational waves beyond a broad sweep through the sky.  On 1 August 2017, Virgo joined LIGO during the second Observation Run, O2. While the LIGO-Virgo three-detector network was operational for only three-and-a-half weeks, five gravitational wave events were observed.  As shown in the following figure, the spatial resolution of the source was greatly improved when a triple detection was made by the two LIGO observatories and Virgo. These events are labeled with the suffix “HLV”.  

Source:  http://www.virgo-gw.eu, 3 December 2018

The greatly reduced areas of the triple event localizations demonstrate the capabilities of the current global gravitational wave observatory network to resolve the source of a gravitational-wave detection.  The LIGO and Virgo Collaboration reports that it can send Open Public Alerts within five minutes of a gravitational wave detection.

With timely notification and more precise source location information, other land-based and space observatories can collaborate more rapidly and develop a comprehensive, multi-spectral (“multi-messenger”) view of the source of the gravitational waves.

When KAGRA and LIGO-India join the worldwide gravitational wave detection network, it is expected that source localizations will become 5 to 10 times more accurate than can be accomplished with just the LIGO and Virgo detectors.

For more background information on gravitational-wave detection, see the following Lyncean posts:

Converting Carbon Dioxide into Useful Products

In my 19 December 2016 post, “What to do with Carbon Dioxide,” I provided an overview of the following three technologies being developed for underground storage (sequestration) or industrial utilization of carbon dioxide:

  • Store in basalt formations by making carbonate rock
  • Store in fractures in deep crystalline rock
  • Make ethanol

You can read this post here:

https://lynceans.org/all-posts/what-to-do-with-carbon-dioxide/

In the past two years, significant progress has been made in the development of processes to convert gaseous carbon dioxide waste streams into useful products.   This post is intended to highlight some of the advances being made and provide links to additional current sources of information on this subject.

1. Carbon XPrize:  Transforming carbon dioxide into valuable products

The NRG / Cosia XPrize is a $20 million global competition to develop breakthrough technologies that will convert carbon dioxide emissions from large point sources like power plants and industrial facilities into valuable products such as building materials, alternative fuels and other items used every day.  You’ll find details on this competition on the XPrize website at the following link:

https://www.xprize.org/prizes/carbon

As shown in the following timeline from the above website, this competition started in September 2015.

Carbon XPrize schedule

In April 2018, the following ten international teams were selected as finalists:

  • Four teams from Canada:  Carbicrete, Carbon Upcycling Technologies, CarbonCure and CERT
  • Three teams from USA:  C2CNT, Carbon Upcycling UCLA and Newlight
  • One team from UK:  Carbon Capture Machine
  • One team from India:  Breathe
  • One team from China:  C4X

The processes being developed by these teams will produce a range of valuable products:

You can read more about each of the competing teams and their intended products in the XPrize finalist selection report here:

https://assets-us-01.kc-usercontent.com/5cb25086-82d2-4c89-94f0-8450813a0fd3/ec5aba69-e68b-48c8-99b0-151e21749d67/XPRIZE%20Carbon%20Finalist%20Team%20Deck.pdf

The competition is now in the testing and certification phase.  Each team is expected to scale up their pilot systems by a factor of 10 for the operational phase, which starts in June 2019 at the Wyoming Integrated Test Center and the Alberta (Canada) Carbon Conversion Technology Center.  

The teams will be judged by the amount of carbon dioxide converted into usable products and the value of those products.  We’ll have to wait until the spring of 2020 for the results of this competition.

2. World’s largest post-combustion carbon capture project

Post-combustion carbon capture refers to capturing carbon dioxide from flue gas after a fossil fuel (e.g., coal, natural gas or oil) has been burned and before the flue gas is exhausted to the atmosphere.  You’ll find a 2016 review of post-combustion carbon capture technologies in the paper by Y. Wang, et al., “A Review of Post-combustion Carbon Dioxide  Capture Technologies from Coal-fired Power Plants,” which is available on the ScienceDirect website here:

https://reader.elsevier.com/reader/sd/pii/S1876610217313851?token=477195C9DBC9D5A1FCDBD7EB6CF04B595E1E377350690F4D2EC6E3D945DA570279962F3A75EE2B281A209A2F52B42A81

In January 2017, NRG Energy reported the completion of the Petra Nova post-combustion carbon capture project, which is designed to remove 90% of the carbon dioxide from a 240 MW “slipstream” of flue gas at the existing W. A. Parish generating plant Unit 8.  The “slipstream” represents 40% of the total flue gas flow from the coal-fired 610 MW Unit 8.  To date, this is the largest post-combustion carbon capture project in the world.  Approximately 1.4 million metric tons of carbon dioxide will be captured annually using a process jointly developed by Mitsubishi Heavy Industries, Ltd. (MHI) and the Kansai Electric Power Co.  The US Department of Energy (DOE) supported this project with a $190 million grant.

The DOE reported: “The project will utilize a proven carbon capture process, which uses a high-performance solvent for carbon dioxide absorption and desorption. The captured carbon dioxide will be compressed and transported through an 80 mile pipeline to an operating oil field where it will be utilized for enhanced oil recovery (EOR) and ultimately sequestered (in the ground).”

Process flow diagram for Petra Nova carbon dioxide capture and processing.  
Source: National Energy Technology Laboratory
The Petra Nova large-scale carbon dioxide scrubber.  
Source: Business Wire

You’ll find more information on the Petra Nova project at the following links:

https://www.powermag.com/worlds-largest-post-combustion-carbon-capture-project-completed/

and

https://www.energy.gov/fe/petra-nova-wa-parish-project

3. Pilot-scale projects to convert carbon dioxide to synthetic fuel

Thyssenkrupp pilot project for conversion of steel mill gases into methanol

In September 2018, Thyssenkrupp reported that it had “commenced production of the synthetic fuel methanol from steel mill gases. It is the first time anywhere in the world that gases from steel production – including the carbon dioxide they contain – are being converted into chemicals. The start-up was part of the Carbon2Chem project, which is being funded to the tune of around 60 million euros by Germany’s Federal Ministry of Education and Research (BMBF)……..‘Today the Carbon2Chem concept is proving its value in practice,’ said Guido Kerkhoff, CEO of Thyssenkrupp. ‘Our vision of virtually carbon dioxide-free steel production is taking shape.’”

You can read the Thyssenkrupp press release here:

https://www.thyssenkrupp.com/en/newsroom/press-releases/press-release-141984.html

Berkeley Laboratory developing a copper catalyst that yields high efficiency carbon dioxide-to-fuels conversion

The DOE Lawrence Berkeley National Laboratory (Berkeley Lab) has been engaged for many years in creating clean chemical manufacturing processes that can put carbon dioxide to good use.  In September 2017, Berkeley Lab announced that its scientists has developed a new electrocatalyst comprised of copper nanoparticles that can directly convert carbon dioxide into multi-carbon fuels and alcohols (e.g., ethylene, ethanol, and propanol) using record-low inputs of energy.  For more information, see the Global Energy World article here:

http://www.globalenergyworld.com/news/30336/copper_catalyst_yields_high_efficiency_co2-to-fuels_conversion.htm

4. Pilot-scale “Negative Emissions Technology” plants

The term negative emissions technology (NET) refers to an industrial processes designed to remove and sequester carbon dioxide directly from the ambient atmosphere rather than from a large point source of carbon dioxide generation (e.g. the flue gas from a fossil-fueled power generating station or a steel mill).  Think of a NET facility as a carbon dioxide removal “factory” that can be sited independently from the sources of carbon dioxide generation.

The Swiss firm Climeworks is in the business of developing carbon dioxide removal factories using the following process:

“Our plants capture atmospheric carbon with a filter. Air is drawn into the plant and the carbon dioxide within the air is chemically bound to the filter.  Once the filter is saturated with carbon dioxide it is heated (using mainly low-grade heat as an energy source) to around 100 °C (212 °F). The carbon dioxide is then released from the filter and collected as concentrated carbon dioxide gas to supply to customers or for negative emissions technologies.  Carbon dioxide-free air is released back into the atmosphere. This continuous cycle is then ready to start again. The filter is reused many times and lasts for several thousand cycles.”

This process is shown in the following Climeworks diagram:

Source: Climeworks

You’ll find more information on Climeworks on their website here:

http://www.climeworks.com

Climeworks NET in Iceland

In 2017, Climeworks began operation in Iceland of their first pilot facility to remove carbon dioxide from ambient air and produce concentrated carbon dioxide that is injected into underground basaltic rock formations, where the carbon dioxide gets converted into carbonite minerals in a relatively short period of time (1 – 2 years) and remains fixed in the rock.  Climeworks uses waste heat from a nearby geothermal generating plant to help run their carbon capture system.  This process is shown in the following diagram.

Source: Climeworks

This small-scale pilot facility is capable of removing only about 50 tons of carbon dioxide from the atmosphere per year, but can be scaled up to a much larger facility.  You’ll find more information on this Climeworks project here:

https://www.popularmechanics.com/science/green-tech/news/a28629/first-negative-emissions-plant/

Climeworks NET in Italy

In October 2018, Climeworks began operation in Italy of another pilot-scale NET facility designed to remove carbon dioxide from the atmosphere.  This facility is designed to remove 150 tons of carbon dioxide from the atmosphere per year and produce a natural gas product stream from the atmospheric carbon dioxide, water, and electricity.  You’ll find more information on this Climeworks project here:

https://www.popularmechanics.com/science/green-tech/a23621438/climeworks-co2-methane-facility/

5. Consensus reports on waste stream utilization and negative emissions technologies (NETs)

The National Academies Press (NAP) recently published a consensus study report entitled, “Gaseous Carbon Waste Streams Utilization, Status and Research Needs,”  which examines the following processes:

  • Mineral carbonation to produce construction material
  • Chemical conversion of carbon dioxide into commodity chemicals and fuels
  • Biological conversion (photosynthetic & non-photosynthetic) of carbon dioxide into commodity chemicals and fuels
  • Methane and biogas waste utilization

The authors note that, “previous assessments have concluded that …… > 10 percent of the current global anthropogenic carbon dioxide emissions….could feasibly be utilized within the next several decades if certain technological advancements are achieved and if economic and political drivers are in place.”

Source: National Academies Press

You can download a free pdf copy of this report here:

https://www.nap.edu/catalog/25232/gaseous-carbon-waste-streams-utilization-status-and-research-needs

Also on the NAP website is a prepublication report entitled, “Negative Emissions Technologies and Reliable Sequestration.” The authors note that NETs “can have the same impact on the atmosphere and climate as preventing an equal amount of carbon dioxide from being emitted from a point source.”

Source: National Academies Press

You can download a free pdf copy of this report here:

https://www.nap.edu/catalog/25259/negative-emissions-technologies-and-reliable-sequestration-a-research-agenda

In this report, the authors note that recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions at the source, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. “ For example, NAPs could be a means for mitigating the methane generated from enteric fermentation in the digestive systems of very large numbers of ruminant animals (e.g., in the U.S., primarily beef and dairy cattle).  For more information on this particular matter, please refer to my 31 December 2016 post, “Cow Farts Could be Subject to Regulation Under a New California Law,” which you’ll find here:

https://lynceans.org/all-posts/cow-farts-could-be-subject-to-regulation-under-a-new-california-law/

What’s been happening in your neighborhood for the past 750 million years?

A 15 February 2019 article by Meilan Solly in the Smithsonian online magazine describes a recently released interactive map of the world that shows how the Earth’s continents have moved since 750 million years ago.   With your cursor, you can zoom in and rotate the globe in any direction. Using a pull-down menu at the top center of the screen, you can see the relative positioning of the landmasses at the point in time you selected.  A similar selection box in the upper right corner of the screen allows you to select a particular geological or evolutionary milestone (i.e., first land animals) in Earths’ development.  Even better, you can enter an address in the text box in the upper-left corner of the screen and then see how your selected location has migrated as you explore through the ages.

You can read the Smithsonian article here:

https://www.smithsonianmag.com/smart-news/map-lets-you-plug-your-address-see-how-neighborhood-has-changed-over-past-750-million-years-180971507/?utm_source=smithsoniandaily&utm_medium=email&utm_campaign=20190215-daily-responsive&spMailingID=38891027&spUserID=ODE1MzYyNTI5NjM5S0&spJobID=1461358228&spReportId=MTQ2MTM1ODIyOAS2

You can directly access the interactive globe here:

http://dinosaurpictures.org/ancient-earth#0

Following are screenshots showing what’s happened to the Lyncean Group’s meeting site in San Diego during the past 750 million years.

I hope you enjoy the interactive globe, with visualization created and maintained by Ian Webster, plate tectonic and paleogeographic maps by C.R. Scotese, and the address search tool by LocationIQ.

Current world map
20 million years ago
66 million years ago – dinosaur extinction
105 million years ago
240 million years ago – Pangea supercontinent
400 million years ago – first land animals.  Looks like the first land animals couldn’t have emerged from the sea in San Diego.
600 million years ago – Pannotia supercontinent
750 million years ago

The Next Phase in the Hunt for New Superheavy Elements is About to Start

Background

On 24 January 2016, I posted the article, “Where in the Periodic Table Will We Put Element 119?”, which reviews the development of the modern periodic table of chemical elements since it was first formulated in 1869 by Russian chemist Dimitri Mendeleev, through the completion of Period 7 with the naming element 118 in 2016.  You can read this post here:

https://lynceans.org/all-posts/where-in-the-periodic-table-will-we-put-element-119/

2019 is the 150thanniversary of Dimitri Mendeleev’s periodic table of elements.  To commemorate this anniversary, the United Nations General Assembly and the United Nations Educational, Scientific and Cultural organization (UNESCO) have proclaimed 2019 as the International Year of the Periodic Table of Chemical Elements (IYPT). You’ll find more information on the IYPT here:

https://www.iypt2019.org

A brief animated “visualization” entitled “Setting the Table,”created by J. Yeston, N. Desai and E. Wang, provides a good overview of the history and configuration of the periodic table.  Check it out here:

http://vis.sciencemag.org/periodic-table/

The prospects for extending the periodic table beyond element 118 (into a new Period 8) is discussed in a short 2018 video from Science Magazine entitled “Where does the periodic table end?,”which you can view here:

https://www.sciencemag.org/news/2019/02/where-does-periodic-table-end?utm_campaign=news_weekly_2019-02-01&et_rid=215579562&et_cid=2632608

The next phase in the hunt for new superheavy elements is about to start in Russia 

Flerov Laboratory of Nuclear Reactions (FLNR) Joint Institute for Nuclear Research (JINR) in Dubna is the leading laboratory in Russia, and perhaps the world, in the search for superheavy elements.  The FLNR website is here:

http://flerovlab.jinr.ru/flnr/she_factory_no.html

FLNR is the home of several accelerators and other experimental setups for nuclear research, including the U400 accelerator, which has been the laboratory’s basic tool for the synthesis of new elements since being placed in operation in 1979.  You can take a virtual tour of U400 on the FLNR website.  

On 30 May 2012 the International Union of Pure and Applied Chemistry (IUPAC) honored the work done by FLNR when it approved the name Flerovium (Fl) for superheavy element 114.

Yuri Oganessian, the Scientific Leader of FLNR, has contributed greatly to extending the periodic table through the synthesis of new superheavy elements.  On 30 November 2016, IUPAC recognized his personal contributions by naming superheavy element 118 after him:  Oganesson (Og). 

Yuri Oganessian.  Source:  MAX AGUILERA HELLWEG / WWW.SCIENCEMAG.ORG
2017 Armenian postage stamp honoring Yuri Oganessian.  Source: FLNR JINR

FLNR has built a new $60 million accelerator facility, dubbed the Superheavy Element Factory (SHEF), which is expected to be capable of synthesizing elements beyond 118.  The SHEF building and the DC-280 cyclotron that will be used to synthesize superheavy elements are shown in the photos below.

The SHEF building, 14 Nov 2016. Source:  FLNR JINR
The completed DC-280 cyclotron, 26 December 2018.  Source:  FLNR JINR

The 2016 paper, “Status and perspectives of the Dubna superheavy element factory,”by S. Dmitriev, M. Itkis and Y. Oganessian, presents an overview of the DC-280 cyclotron design, including the following diagram showing the general arrangement of the major components.

Arrangement of the major components of the DC-280 cyclotron.  

You can read this 2016 paper here:

http://inspirehep.net/record/1502737/files/epjconf-NS160-08001.pdf

For insights into the processes for synthesizing superheavy elements, I recommend that you view the following March 2018 video in which FLNR Director Sergey Dmitriev describes the design of SHEF and the planned process of synthesizing superheavy elements 119 and 120.  This is a rather long (23 min) video, but I think it will be worth your time.

On 26 December 2018, the DC-280 cyclotron produced its first beam of accelerated heavy ions.  The hunt for new superheavy elements using DC-280 is scheduled to begin in the spring of 2019.

A good overview of FLNR, as it prepares to put its Superheavy Element Factory into operation, is available in the article by Sam Kean, entitled “A storied Russian lab is trying to push the periodic table past its limits—and uncover exotic new elements,” which was posted on 30 January 2019 on the Science Magazine website. You’ll find this article at the following link:

https://www.sciencemag.org/news/2019/01/storied-russian-lab-trying-push-periodic-table-past-its-limits-and-uncover-exotic-new?utm_campaign=news_weekly_2019-02-01&et_rid=215579562&et_cid=2632608

The next few years may yield exciting new discoveries of the first members of Period 8 of the periodic table.  I think Dimitri Mendeleev would be impressed.

Additional reading: