Tag Archives: NASA

Multi-messenger Astronomy Provides Extraordinary Views of Uranus

Peter Lobner

In March 2021, the National Aeronautics and Space Administration (NASA) announced that its orbiting Chandra X-ray Observatory had made the first ever detection of X-rays coming from the ice giant planet Uranus.  Recent analysis of Chandra observations from 2002 and 2017 resulted in this discovery.

X-rays coming from other planets have been detected in the past.  NASA reported, “Like Jupiter and Saturn, Uranus and its rings appear to mainly produce X-rays by scattering solar X-rays, but some may also come from auroras…… The X-rays from auroras on Jupiter come from two sources: electrons traveling down magnetic field lines, as on Earth, and positively charged atoms and molecules raining down at Jupiter’s polar regions. However, scientists are less certain about what causes auroras on Uranus.”  

Another possible X-ray source could be from an interaction between Uranus’ rings and the near-space charged particle environment around the planet.  This phenomenon has been observed at Saturn.

You can read the NASA announcement of this discovery here: https://chandra.si.edu/photo/2021/uranus/

The full paper describing the discovery is available in the Journal of Geophysical Research at the following link: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020JA028739

In connection with the discovery of X-rays coming from Uranus, NASA released two spectacular composite (multi-messenger) images of the planet created by combining images from two different parts of the electromagnetic spectrum: optical / near-infrared and X-ray. 

Visible light has a wavelength in the range from about 350 to 750 nanometers (nm, 10-9meters) or 3,500 to 7,500 Angstroms.  Near-infrared light is the part of the infrared spectrum that is closest to the visible light spectrum, but at a longer wavelength, from about 800 to 2,500 nm.  X-rays have a much shorter wavelength, from about 20 to 0.001 nm.  In the following chart, you can see the relative placement of visible and near-infrared light and X-rays in the electromagnetic spectrum.

Electromagnetic spectrum. Source: Wikipedia

The components of the first composite image are described below:

  • Near-infrared image: This was taken in July 2004 with the 10-meter (32-foot 10-inch) Keck-1 telescope located at an altitude of 4,145 meters (13,599 ft) on Maunakea, Hawaii. Image credit: Heidi B. Hammel, Space Science Institute; Lawrence Sromovsky, University of Wisconsin-Madison / W. M. Keck Observatory
  • The X-ray image: This was produced with 7 August 2002 data from the Advanced CCD Imaging Spectrometer (ACIS) aboard Chandra, which has a spatial resolution of 0.5” (seconds). The angular size of Uranus for the observation was 3.7”. The X-rays were in the 0.6 to 1.1 keV (2.1 to 1.1 nm) spectral range, which is consistent with X-ray emissions from Jupiter and Saturn. Image credit: NASA/CXO/University College London/W. Dunn et al.
(Left) Keck-1 July 2004 near-infrared image of Uranus.
The North Pole is at the 4 o’clock position. 
(Right) Chandra August 2002 ACIS X-ray image of Uranus.
2021 Keck-1 & Chandra ACIS composite image

The second 2021 composite image, shown below, was created from a Keck optical image and X-ray images made with Chandra’s High Resolution Camera (HRC) during observations on 11 and 12 November 2017.  The HRC is sensitive to softer X-ray emissions (down to 0.06 keV, 20.7 nm) than ACIS, enabling it to collect more photons in the 0.1–1.2 keV (12.4 to 0.1 nm) range most important for planetary studies. The authors report, ”These fluxes exceed expectations from scattered solar emission alone, suggesting either a larger X-ray albedo than Jupiter/Saturn or the possibility of additional X-ray production processes at Uranus.”

2021 Keck & Chandra HRC composite image
Sources:  X-ray: NASA/CXO/University College London/W. Dunn 
et al; Optical: W.M. Keck Observatory

The authors conclude by noting that, “Further, and longer, observations with Chandra would help to produce a map of X-ray emission across Uranus and to identify, with better signal-to-noise, the source locations for the X-rays, constraining possible contributions from the rings and aurora…… However, the current generation of X-ray observatories does not provide sufficient sensitivity to spectrally characterize the short interval temporal fluctuation observed in the November 12, 2017 observation.”

New space-based X-ray observational capabilities are being developed by NASA and the European Space Agency (ESA), but won’t be operational for a decade or more:

For more information:

Japan’s Hayabusa2 Spacecraft Returns Asteroid Material to Earth

Peter Lobner

Japan’s Hayabusa2 (Japanese for Peregrine falcon 2) spacecraft returned from its six-year mission to asteroid 162173 Ryugu for a high-speed fly-by of Earth on 5 December 2020, during which it released a reentry capsule containing the material collected during two separate sampling visits to the asteroid’s surface.  The capsule successfully reentered Earth’s atmosphere, landed in the planned target area in Australia’s Woomera Range and was recovered intact.  The sample return capsule is known as the “tamatebako” (treasure box).

Location of Woomera Range.  Source: itea.org
Hayabusa2’s sample return capsule after landing in the Woomera Range, Australia.  
Source: JAXA
Capsule containing samples from asteroid Ryugu.  Source: JAXA


The first asteroid sample return mission was Japan’s Hayabusa1, which was launched on 9 May 2003 and rendezvoused with S-type asteroid 25143 Itokawa in mid-September 2005. A small sample was retrieved from the surface on 25 November 2005. The sample, comprised of tiny grains of asteroidal material, was returned to Earth on 13 June 2010, with a landing in the Woomera Range.

Japan’s Hayabusa2 and the US OSIRIS-Rex asteroid sample return missions overlap, with Hayabusa2 launching about two years earlier and returning its surface samples almost three years earlier.  Both spacecraft were orbiting their respective asteroids from 31 December 2018 to 12 November 2019.

You’ll find a great deal of information and current news on the Hayabusa2 and OSIRIS-REx asteroid sample return missions on their respective project website:

The Hayabusa2 extended mission

An extended mission to explore additional asteroids was made possible by the excellent health of the Hayabusa2 spacecraft and the economic use of fuel during the basic mission.  Hayabusa2 still has 30 kg (66 lb) of xenon propellant for its ion engines, about half of its initial load of 66 kg (146 lb).

As of September 2020, JAXA’s plans are is to target the Hayabusa2 spacecraft for the following two asteroid encounters: 

  • Conduct a high-speed fly-by of L-type asteroid (98943) 2001 CC21 in July 2026.  This asteroid has a diameter between 3.47 to 15.52 kilometers (2.2 to 9.6 miles).
  • Continue on a rendezvous with asteroid 1998 KY26 in July 2031.  This is a 30-meter (98-foot) diameter asteroid, potentially X-type (metallic), and rotating rapidly with a period of only 10.7 minutes.
Computer model view of 1998 KY26 based on radar data from Goldstone observatory.  Source: NASA/JPL via Wikipedia

You’ll find more information on the extended mission on the Hayabusa project website here:  https://www.hayabusa2.jaxa.jp/en/galleries/othermovie/pages/ext_mission_en.html

For more information:

The Moon has Never Looked so Colorful

Peter Lobner

On 20 April 2020, the U.S. Geological Survey (USGS) released the first-ever comprehensive digital geologic map of the Moon.  The USGS described this high-resolution map as follows:

“The lunar map, called the ‘Unified Geologic Map of the Moon,’ will serve as the definitive blueprint of the moon’s surface geology for future human missions and will be invaluable for the international scientific community, educators and the public-at-large.”

Color-coded orthographic projections of the “Unified Geologic Map of the Moon” showing the geology of the Moon’s near side (left) and far side (right).  Source:  NASA/GSFC/USGS

You’ll find the USGS announcement here:  https://www.usgs.gov/news/usgs-releases-first-ever-comprehensive-geologic-map-moon

You can view an animated, rotating version of this map here:  https://www.youtube.com/watch?v=f2Nt7DxUV_k

This remarkable mapping product is the culmination of a decades-long project that started with the synthesis of six Apollo-era (late 1960s – 1970s) regional geologic maps that had been individually digitized and released in 2013 but not integrated into a single, consistent lunar map. 

This intermediate mapping product was updated based on data from the following more recent lunar satellite missions:

  • NASA’s Lunar Reconnaissance Orbiter (LRO) mission:
    • The Lunar Reconnaissance Orbiter Camera (LROC) is a system of three cameras that capture high resolution black and white images and moderate resolution multi-spectral images of the lunar surface: http://lroc.sese.asu.edu
    • Topography for the north and south poles was supplemented with Lunar Orbiter Laser Altimeter (LOLA) data: https://lola.gsfc.nasa.gov
  • JAXA’s (Japan Aerospace Exploration Agency) SELENE (SELenological and ENgineering Explorer) mission:

The final product is a seamless, globally consistent map that is available in several formats: geographic information system (GIS) format at 1:5,000,000-scale, PDF format at 1:10,000,000-scale, and jpeg format.

At the following link, you can download a large zip file (310 Mb) that contains a jpeg file (>24 Mb) with a Mercator projection of the lunar surface between 57°N and 57°S latitude, two polar stereographic projections of the polar regions from 55°N and 55°S latitudes to the poles, and a description of the symbols and color coding used in the maps.


These high-resolution maps are great for exploring the lunar surface in detail. A low-resolution copy (not suitable for browsing) is reproduced below.

For more information on the Unified Geologic Map of the Moon, refer to the paper by C. M. Fortezzo, et al., “Release of the digital Unified Global Geologic Map of the Moon at 1:5,000,000-scale,” which is available here:  https://www.hou.usra.edu/meetings/lpsc2020/pdf/2760.pdf

50th Anniversary of the First Manned Moon Landing and a Very Long Time Since the Last Manned Moon Landing

Peter Lobner

On July 16th, 1969, 13:32:00 UTC, the Saturn V launch vehicle, SA-506, lifted off from Launch Pad 39-A at Kennedy Space Center, Florida on the Apollo 11 mission with astronauts Neil Armstrong (Mission commander), Michael Collins (Command Module pilot) and Edwin (Buzz) Aldrin (Lunar Module pilot).

L to R:  Neil Armstrong, Michael Collins & Buzz Aldrin.  
Source: NASA
Apollo 11 insignia: Eagle with wings outstretched holding 
an olive branch above the Moon with Earth in the background. Source: NASA via Wikipedia

The Apollo spacecraft consisted of three modules: 

  • The three-person Command Module (CM), named Columbia, was the living quarters for the three-person crew during most of the lunar landing mission.
  • The Service Module (SM) contained the propulsion system, electrical fuel cells, consumables storage tanks (oxygen, hydrogen) and various service / support systems. 
  • The two-person, two-stage Lunar Module (LM), named Eagle, would make the Moon landing with two astronauts and return them to the CM.  

The LM’s descent stage (bottom part of the LM with the landing legs) remained on the lunar surface and served as the launch pad for the ascent stage (upper part of the LM with the crew compartment).  Only the 4.9 ton CM was designed to withstand Earth reentry conditions and return the astronauts safely to Earth.

General configuration of the Apollo spacecraft.  The “CSM” is the combined Command Module and Service Module.  Source:  NASA

From its initial low Earth parking orbit, Apollo 11 flew a direct trans-lunar trajectory to the Moon, inserting into lunar orbit about 76 hours after liftoff.  The Apollo 11 mission profile to and from the Moon is shown in the following diagram, and is described in detail here: https://www.mpoweruk.com/Apollo_Moon_Shot.htm

Source:  NASA

Neil Armstrong and Buzz Aldrin landed the Eagle LM in the Sea of Tranquility on 20 July 1969, at 20:17 UTC (about 103 hours elapsed time since launch), while Michael Collins remained in a near-circular lunar orbit aboard the CSM.  Neil Armstrong characterized the lunar surface at the Tranquility Base landing site with the observation, “it has a stark beauty all its own.”

In the two and a half hours they spent on the lunar surface, Armstrong and Aldrin collected 21.55 kg (47.51 lb) of rock samples, took photographs and set up the Passive Seismic Experiment Package (PSEP) and the Laser Ranging RetroReflector (LRRR), which would be left behind on the Moon. The PSEP provided the first lunar seismic data, returning data for three weeks after the astronauts left, and the LRRR allows precise distance measurements to be collected to this day.  Neil Armstrong made an unscheduled jaunt to Little West crater, about 50 m (164 feet) east of the LM, and provided the first view into a lunar crater.

Apollo 11 PSEP in the foreground with astronaut Buzz Aldrin and the LRRR behind it, then the Eagle LM, the American flag, and the TV camera on the left horizon
beyond the American flag.  Source: NASA
Neil Armstrong’s photo showing the Eagle LM from Little West crater
(33 meters in diameter). Source: NASA
Apollo 11 landing site captured from 24 km (15 miles) above the surface
by NASA’s Lunar Reconnaissance Orbiter (LRO).
Source: adapted from NASA Goddard/Arizona State University
Apollo 11 “traverse” map.  
Source: NASA via Smithsonian https://airandspace.si.edu/

Armstrong and Aldrin departed the Moon on 21 July 1969 at 17:54 UTC in the ascent stage of the Eagle LM and then rendezvoused and docked with Collins in the CSM about 3-1/2 hours later. 

LM Eagle ascent stage with Armstrong and Aldrin approaching the CSM Columbia piloted by Collins.  Source: NASA

After discarding the ascent stage, the CSM main engine was fired and Apollo 11 left lunar orbit on 22 July 1969 at 04:55:42 UTC and began its trans-Earth trajectory.  As the Apollo spacecraft approached Earth, the SM was jettisoned. 

The CM reentered the Earth’s atmosphere and landed in the North Pacific on 24 July 1969 at 16:50:35 UTC.  The astronauts and the Apollo 11 spacecraft were recovered by the aircraft carrier USS Hornet.  President Nixon personally visited and congratulated the astronauts while they were still in quarantine aboard the USS Hornet.  You can watch a video of this meeting here:

Mankind’s first lunar landing mission was a great success.

Postscript to the first Moon landing

A month after returning to Earth, the Apollo 11 astronauts were given a ticker tape parade in New York City, then termed as the largest such parade in the city’s history.

New York City ticker tape parade for the Apollo 11 astronauts.  
Source: NASA / Bill Taub

There were a total of six Apollo lunar landings (Apollo 11, 12, 14, 15, 16, and 17), with the last mission, Apollo 17, returning to Earth on 19 December 1972.  Their landing sites are shown in the following graphic.

The Apollo landing sites.  Source: NASA

In the past 46+ years since Apollo 17, there have been no manned missions to the Moon by the U.S. or any other nation.

You’ll find extensive Apollo historical resources on the NASA website starting from the following link to the Apollo program webpage: https://www.nasa.gov/mission_pages/apollo/index.html

Along with astronaut John Glenn, the first American to fly in Earth orbit, the three Apollo 11 astronauts were awarded the New Frontier Congressional Gold Medal in the Capitol Rotunda on 16 November 2011. This is the Congress’ highest civilian award and expression of national appreciation for distinguished achievements and contributions.

Neil Armstrong died on 25 August 2012 at the age of 82.

The Apollo 11 command module Columbia was physically transferred to the Smithsonian Institution in 1971 and has been on display for decades at the National Air and Space Museum on the mall in Washington D.C.  For the 50th anniversary of the Apollo 11 mission, Columbia will be on display at The Museum of Flight in Seattle, as the star of the Smithsonian Institution’s traveling exhibition, “Destination Moon: The Apollo 11 Mission.”  You can get a look at this exhibit at the following link:  http://www.collectspace.com/news/news-041319a-destination-moon-seattle-apollo.html

The Apollo 11 command module Columbia at 
The Museum of Flight in Seattle. Source: collectSPACE

After years of changing priorities under the Bush and Obama administrations, NASA’s current vision for the next U.S. manned lunar landing mission is named Artemis, after the Greek goddess of hunting and twin sister of Apollo.  NASA currently is developing the following spaceflight systems for the Artemis mission:

  • The Space Launch System (SLS) heavy launch vehicle.
  • A manned “Gateway” station that will be placed in lunar orbit, where it will serve as a transportation node for lunar landing vehicles and manned spacecraft for deep space missions.
  • The Orion multi-purpose manned spacecraft, which will deliver astronauts from Earth to the Gateway, and also can be configured for deep space missions.
  • Lunar landing vehicles, which will shuttle between the Gateway and destinations on the lunar surface.
The Orion spacecraft is functionally comparable to the Apollo command and
service modules.  Source:  NASA

While NASA has a tentative goal of returning humans to the Moon by 2024, the development schedules for the necessary Artemis systems may not be able to meet this ambitious schedule.  The landing site for the Artemis mission will be in the Moon’s south polar region. NASA administrator Jim Bridenstine has stated that Artemis will deliver the first woman to the Moon.

NASA reported the Artemis moon program status in May 2019 at the following link: https://www.nasa.gov/artemis-moon-program-advances

Additional reading on Project Apollo and the first Moon landing mission:

  • Roger D. Launis, “Apollo’s Legacy: Perspectives on the Moon Landings,” Smithsonian Books, 14 May 2019, ISBN-13: 978-1588346490
  • Neil Armstrong, Michael Collins & Edwin Aldrin, “First on the Moon,” William Konecky Assoc., 15 October 2002, ISBN-13: 978-1568523989
  • Michael Collins, “Flying to the Moon: An Astronaut’s Story,” Farrar, Straus and Giroux (BYR); 3 edition, 28 May 2019, ISBN-13: 978-0374312022
  • Michael Collins, “Carrying the Fire: An Astronaut’s Journeys: 50th Anniversary Edition Anniversary Edition,” Farrar, Straus and Giroux, 16 April 2019, ISBN-13: 978-0374537760
  • Edwin Aldrin, “Return to Earth,” Random House; 1st edition, 1973, ISBN-13: 978-0394488325

India Poised to Become the 4th Nation to Land a Spacecraft on the Moon

Peter Lobner

This post was updated on 31 July 2019

After the failure of Israel’s Beresheet spacecraft to execute a soft landing on the Moon in April 2019, India is the next new contender for lunar soft landing honors with their Chandrayaan-2 spacecraft.  We’ll take a look at the Chandrayaan-2 mission in this post.

If you’re not familiar with the Israel’s Beresheet lunar mission, see my 4 April 2019 post at the following link:  https://lynceans.org/all-posts/israel-is-poised-to-become-the-4th-nation-to-land-a-spacecraft-on-the-moon/

1. Background:  India’s Chandrayaan-1 mission to the Moon

India’s first mission to the Moon, Chandrayaan-1, was a mapping mission designed to operate in a circular (selenocentric) polar orbit at an altitude of 100 km (62 mi).  The Chandrayaan-1 spacecraft, which had an initial mass of 1,380 kg (3,040 lb), consisted of two modules, an orbiter and a Moon Impact Probe (MIP). Chandrayaan-1 carried 11 scientific instruments for chemical, mineralogical and photo-geologic mapping of the Moon.  The spacecraft was built in India by the Indian Space Research Organization (ISRO), and included instruments from the USA, UK, Germany, Sweden and Bulgaria.  

Chandrayaan-1 was launched on 22 October 2008 from the Satish Dhawan Space Center (SDSC) in Sriharikota on an “extended” version of the indigenous Polar Satellite Launch Vehicle designated PSLV-XL. Initially, the spacecraft was placed into a highly elliptical geostationary transfer orbit (GTO), and was sent to the Moon in a series of orbit-increasing maneuvers around the Earth over a period of 21 days.  A lunar transfer maneuver enabled the Chandrayaan-1 spacecraft to be captured by lunar gravity and then maneuvered to the intended lunar mapping orbit.   This is similar to the five-week orbital transfer process used by Israel’s Bersheet lunar spacecraft to move from an initial GTO to a lunar circular orbit.

The goal of MIP was to make detailed measurements during descent using three instruments: a radar altimeter, a visible imaging camera, and a mass spectrometer known as Chandra’s Altitudinal Composition Explorer (CHACE), which directly sampled the Moon’s tenuous gaseous atmosphere throughout the descent.  On 14 November 2008, the 34 kg (75 lb) MIP separated from the orbiter and descended for 25 minutes while transmitting data back to the orbiter.  MIP’s mission ended with the expected hard landing in the South Pole region near Shackelton crater at 85 degrees south latitude.

In May 2009, controllers raised the orbit to 200 km (124 miles) and the orbiter mission continued until 28 August 2009, when communications with Earth ground stations were lost.  The spacecraft was “found” in 2017 by NASA ground-based radar, still in its 200 km orbit.

Numerous reports have been published describing the detection by the Chandrayaan-1 mission of water in the top layers of the lunar regolith.  The data from CHACE produced a lunar atmosphere profile from orbit down to the surface, and may have detected trace quantities of water in the atmosphere.  You’ll find more information on the Chandrayaan-1 mission at the following links:

2. India’s upcoming Chandrayaan-2 mission to the Moon

Chandrayaan-2 was launched on 22 July 2019.  After achieving a 100 km (62 mile) circular polar orbit around the Moon, a lander module will separate from the orbiting spacecraft and descend to the lunar surface for a soft landing, which currently is expected to occur in September 2019, after a seven-week journey to the Moon.  The target landing area is in the Moon’s southern polar region, where no lunar lander has operated before.  A small rover vehicle will be deployed from the lander to conduct a 14-day mission on the lunar surface.  The orbiting spacecraft is designed to conduct a one-year mapping mission.

Artist’s illustration of India’s lunar lander and the small rover vehicle
on the surface of the moon. Source: ISRO

The launch vehicle

India will launch Chandrayaan-2 using the medium-lift Geosynchronous Satellite Launch Vehicle Mark III (GSLV Mk III) developed and manufactured by ISRO.  As its name implies, GSLV Mk III was developed primarily to launch communication satellites into geostationary orbit.  Variants of this launch vehicle also are used for science missions and a human-rated version is being developed to serve as the launch vehicle for the Indian Human Spaceflight Program.

The GSLV III launch vehicle will place the Chandrayaan-2 spacecraft into an elliptical parking orbit (EPO) from which the spacecraft will execute orbital transfer maneuvers comparable to those successfully executed by Chandrayaan-1 on its way to lunar orbit in 2008.  The Chandrayaan-2 mission profile is shown in the following graphic. You’ll find more information on the GSLV Mk III on the ISRO website at the following link:  https://www.isro.gov.in/launchers/gslv-mk-iii

Source:  ISRO
GSLV Mk III D2 on the launch pad at SDSC for the launch of the GSAT-29 communications satellite
in 2018. Source:  ISRO via Wikipedia
GSLV Mk III D1 lifting off from the SDSC with the GSAT-19 communications satellite
in 2017. Source:  ISRO via Wikipedia
Transporting the partially integrated GSLV MkIII M1 launch vehicle
 for the Chandrayaan-2 mission on the Mobile Launch Pedestal.  
Source: ISRO

The spacecraft

Chandrayaan-2 builds on the design and operating experience from the previous Chandrayaan-1 mission.  The new spacecraft developed by ISRO has an initial mass of 3,877 kg (8,547 lb).  It consists of three modules: an Orbiter Craft (OC) module, the Vikram Lander Craft (LC) module, and the small Pragyan rover vehicle, which is carried by the LC.  The three modules are shown in the following diagram.

Three spacecraft modules (not to scale).  Source: ISRO

Chandrayaan-2 carries 13 Indian payloads — eight on the orbiter, three on the lander and two on the rover. In addition, the lander carries a passive Laser Retroreflector Array (LRA) provided by NASA. 

Laser Retroreflector Array (LRA). Source: ISRO

The OC and the LC are stacked together within the payload fairing of the launch vehicle and remain stacked until the LC separates in lunar orbit and starts its descent to the lunar surface.

Orbiter (bottom) & lander (top) in stacked configuration.  Source: ISRO

The solar-powered orbiter is designed for a one-year mission to map lunar surface characteristics (chemical, mineralogical, topographical), probe the lunar surface for water ice, and map the lunar exosphere using the CHACE-2 mass spectrometer.  The orbiter also will relay communication between Earth and Vikram lander.

The orbiter.  Source: ISRO

The solar-powered Vikram lander weighs 1,471 kg (3,243 lb).  The scientific instruments on the lander will measure lunar seismicity, measure thermal properties of the lunar regolith in the polar region, and measure near-surface plasma density and its changes with time. 

The Vikram lander with the Pragyan rover on the ramp. Source: ISRO

The 27 kg (59.5 lb) six-wheeled Pragyan rover, whose name means “wisdom” in Sanskrit, is solar-powered and capable of traveling up to 500 meters (1,640 feet) on the lunar surface. The rover can communicate only with the Vikram lander.  It is designed for a 14-day mission on the lunar surface.  It is equipped with cameras and two spectroscopes to study the elemental composition of lunar soil.

Rover during testing. Source: ISRO
Rover details.  Source: ISRO

You’ll find more information on the spacecraft in the 2018 article by V. Sundararajan, “Overview and Technical Architecture of India’s Chandrayaan-2 Mission to the Moon,” at the following link:


Also see the ISRO webpage for the GSLV-Mk III – M1 / Chandrayaan-2 mission at the following link:


Best wishes to the Chandrayaan-2 mission team for a successful soft lunar landing and long-term lunar mapping mission.

Declassified Military Satellite Imagery has Applications in a Wide Variety of Civilian Geospatial Studies

Peter Lobner

1. Overview of US military optical reconnaissance satellite programs

The National Reconnaissance Office (NRO) is responsible for developing and operating space reconnaissance systems and conducting intelligence-related activities for US national security.  NRO developed several generations of classified Keyhole (KH) military optical reconnaissance satellites that have been the primary sources of Earth imagery for the US Department of Defense (DoD) and intelligence agencies.  NRO’s website is here:


NRO’s early generations of Keyhole satellites were placed in low Earth orbits, acquired the desired photographic images on film during relatively short-duration missions, and then returned the film to Earth in small reentry capsules for airborne recovery. After recovery, the film was processed and analyzed.  The first US military optical reconnaissance satellite program, code named CORONA, pioneered the development and refinement of the technologies, equipment and systems needed to deploy an operational orbital optical reconnaissance capability. The first successful CORONA film recovery occurred on 19 August 1960.

Specially modified US Air Force C-119J aircraft recovers a
CORONA film canister in flight.  Source: US Air Force
First reconnaissance picture taken in orbit and successfully recovered on Earth;  taken on 18 August 1960 by a CORONA KH-1 satellite dubbed Discoverer 14.  Image shows the Mys Shmidta airfield in the Chukotka region of the Russian Arctic, with a resolution of about 40 feet (12.2 meters).  Source: Wikipedia

Keyhole satellites are identified by a code word and a “KH” designator, as summarized in the following table.

In 1976, NRO deployed its first electronic imaging optical reconnaissance satellite known as KENNEN KH-11 (renamed CRYSTAL in 1982), which eventually replaced the KH-9, and brought an end to reconnaissance satellite missions requiring film return.  The KH-11 flies long-duration missions and returns its digital images in near real time to ground stations for processing and analysis.  The KH-11, or an advanced version sometimes referred to as the KH-12, is operational today.

US film-return reconnaissance satellites from KH-1 to KH-9 shown to scale
with the KH-11 electronic imaging reconaissance satellite.  
Credit: Giuseppe De Chiara and The Space Review.

Geospatial intelligence, or GEOINT, is the exploitation and analysis of imagery and geospatial information to describe, assess and visually depict physical features and geographically referenced activities on the Earth. GEOINT consists of imagery, imagery intelligence and geospatial information.  Satellite imagery from Keyhole reconnaissance satellites is an important information source for national security-related GEOINT activities.

The National Geospatial-Intelligence Agency (NGA), which was formed in 2003, has the primary mission of collecting, analyzing, and distributing GEOINT in support of national security.  NGA’s predecessor agencies, with comparable missions, were:

  • National Imagery and Mapping Agency (NIMA), 1996 – 2003
  • National Photographic Interpretation Center (NPIC), a joint project of the Central Intelligence Agency (CIA) and DoD, 1961 – 1996

The NGA’s web homepage, at the following link: https://www.nga.mil/Pages/Default.aspx

The NGA’s webpage for declassified satellite imagery is here: https://www.nga.mil/ProductsServices/Pages/Imagery.aspx

2. The advent of the US civilian Earth observation programs

Collecting Earth imagery from orbit became an operational US military capability more than a decade before the start of the joint National Aeronautics & Space Administration (NASA) / US Geological Survey (USGS) civilian Landsat Earth observation program.  The first Landsat satellite was launched on 23 July 1972 with two electronic observing systems, both of which had a spatial resolution of about 80 meters (262 feet). 

Since 1972, Landsat satellites have continuously acquired low-to-moderate resolution digital images of the Earth’s land surface, providing long-term data about the status of natural resources and the environment. Resolution of the current generation multi-spectral scanner on Landsat 9 is 30 meters (98 feet) in visible light bands. 

You’ll find more information on the Landsat program on the USGS website here: https://www.usgs.gov/land-resources/nli/landsat

3. Declassification of certain military reconnaissance satellite imagery

All military reconnaissance satellite imagery was highly classified until 1995, when some imagery from early defense reconnaissance satellite programs was declassified.  The USGS explains:

“The images were originally used for reconnaissance and to produce maps for U.S. intelligence agencies. In 1992, an Environmental Task Force evaluated the application of early satellite data for environmental studies. Since the CORONA, ARGON, and LANYARD data were no longer critical to national security and could be of historical value for global change research, the images were declassified by Executive Order 12951 in 1995”

You can read Executive Order 12951 here: https://www.govinfo.gov/content/pkg/WCPD-1995-02-27/pdf/WCPD-1995-02-27-Pg304.pdf

Additional sets of military reconnaissance satellite imagery were declassified in 2002 and 2011 based on extensions of Executive Order 12951.

The declassified imagery is held by the following two organizations:

  • The original film is held by the National Archives and Records Administration (NARA).
  • Duplicate film held in the USGS Earth Resources Observation and Science (EROS) Center archive is used to produce digital copies of the imagery for distribution to users.

The declassified military satellite imagery available in the EROS archive is summarized below:

USGS EROS Archive – Declassified Satellite Imagery – 1 (1960 to 1972)

  • This set of photos, declassified in 1995, consists of more than 860,000 images of the Earth’s surface from the CORONA, ARGON, and LANYARD satellite systems.
  • CORONA image resolution improved from 40 feet (12.2 meters) for the KH-1 to about 6 feet (1.8 meters) for the KH-4B.
  • KH-5 ARGON image resolution was about 460 feet (140 meters).
  • KH-6 LANYARD  image resolution was about 6 feet (1.8 meters).

USGS EROS Archive – Declassified Satellite Imagery – 2 (1963 to 1980)

  • This set of photos, declassified in 2002, consists of photographs from the KH-7 GAMBIT surveillance system and KH-9 HEXAGON mapping program.
  • KH-7 image resolution is 2 to 4 feet (0.6 to 1.2 meters).  About 18,000 black-and-white images and 230 color images are available.
  • The KH-9 mapping camera was designed to support mapping requirements and exact positioning of geographical points. Not all KH-9 satellite missions included a mapping camera.  Image resolution is 20 to 30 feet (6 to 9 meters); significantly better than the 98 feet (30 meter) resolution of LANDSAT imagery.  About 29,000 mapping images are available.

USGS EROS Archive – Declassified Satellite Imagery – 3 (1971 to 1984)

  • This set of photos, declassified in 2011, consists of more photographs from the KH-9 HEXAGON mapping program.  Image resolution is 20 to 30 feet (6 to 9 meters).

More information on the declassified imagery resources is available from the USGS EROS Archive – Products Overview webpage at the following link (see heading “Declassified Data”): https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects

4.  Example applications of declassified military reconnaissance satellite imagery

The declassified military reconnaissance satellite imagery provides views of the Earth starting in the early 1960s, more than a decade before civilian Earth observation satellites became operational.  The military reconnaissance satellite imagery, except from ARGON KH-5, is higher resolution than is available today from Landsat civilian earth observation satellites. The declassified imagery is an important supplement to other Earth imagery sources.  Several examples applications of the declassified imagery are described below.

Assessing Aral Sea depletion:

USGS reports: “The Aral Sea once covered about 68,000 square kilometers, a little bigger than the U.S. state of West Virginia. It was the 4th largest lake in the world. It is now only about 10% of the size it was in 1960…..In the 1990s, a dam was built to prevent North Aral water from flowing into the South Aral. It was rebuilt in 2005 and named the Kok-Aral Dam…..The North Aral has stabilized but the South Aral has continued to shrink and become saltier. Up until the 1960s, Aral Sea salinity was around 10 grams per liter, less than one-third the salinity of the ocean. The salinity level now exceeds 100 grams per liter in the South Aral, which is about three times saltier than the ocean.”

On the USGS website, the “Earthshots: Satellite Images of Environmental Change” webpages show the visible changes at many locations on Earth over a 50+ year time period.  The table of contents to the Earthshots webpages is shown below and is at the following link: http:// https://earthshots.usgs.gov/earthshots/

USGS Earthshots Table of Contents

For the Aral Sea region, the Earthshots photo sequences start with ARGON KH-5 photos taken in 1964.  Below are three screenshots  of the USGS Earthshots pages showing the KH-5 images for the whole the Aral Sea, the North Aral Sea region and the South Aral Sea region. You can explore the Aral Sea Earthshots photo sequences at the following link: https://earthshots.usgs.gov/earthshots/node/91#ad-image-0-0

Assessing Antarctic ice shelf condition:

In a 7 June 2016 article entitled, ”Spy satellites reveal early start to Antarctic ice shelf collapse,” Thomas Sumner reported:

“Analyzing declassified images from spy satellites, researchers discovered that the downhill flow of ice on Antarctica’s Larsen B ice shelf was already accelerating as early as the 1960s and ’70s. By the late 1980s, the average ice velocity at the front of the shelf was around 20 percent faster than in the preceding decades,….”

You can read the complete article on the ScienceNews website here: https://www.sciencenews.org/article/spy-satellites-reveal-early-start-antarctic-ice-shelf-collapse

Satellite images taken by the ARGON KH-5 satellite have revealed how the accelerated movement that triggered the collapse of the Larsen B ice shelf on the east side of the Antarctic Peninsula began in the 1960s. The declassified images taken by the satellite on 29 August 1963 and 1 September 1963 are pictured right.  
Source: Daily Mail, 10 June 2016

Assessing Himalayan glacier condition:  

In a 19 June 2019 paper “Acceleration of ice loss across the Himalayas over the past 40 years,” the authors, reported on the use of HEXAGON KH-9 mapping camera imagery to improve their understanding of trends affecting the Himalayan glaciers from 1975 to 2016:

“Himalayan glaciers supply meltwater to densely populated catchments in South Asia, and regional observations of glacier change over multiple decades are needed to understand climate drivers and assess resulting impacts on glacier-fed rivers. Here, we quantify changes in ice thickness during the intervals 1975–2000 and 2000–2016 across the Himalayas, using a set of digital elevation models derived from cold war–era spy satellite film and modern stereo satellite imagery.”

“The majority of the KH-9 images here were acquired within a 3-year interval (1973–1976), and we processed a total of 42 images to provide sufficient spatial coverage.”

“We observe consistent ice loss along the entire 2000-km transect for both intervals and find a doubling of the average loss rate during 2000–2016.”

“Our compilation includes glaciers comprising approximately 34% of the total glacierized area in the region, which represents roughly 55% of the total ice volume based on recent ice thickness estimates.”

You can read the complete paper by J. M. Maurer, et al., on the Science Advances website here: https://advances.sciencemag.org/content/5/6/eaav7266

3-D image of the Himalayas derived from HEXAGON KH-9 satellite mapping photographs taken on December 20, 1975. Source:  J. M. Maurer/LDEO

Discovering archaeological sites:

The Center for Advanced Spatial Technologies, a University of Arkansas / U.S. Geological Survey collaboration, has undertaken the CORONA Atlas Project using military reconnaissance satellite imagery to create the “CORONA Atlas & Referencing System”. The current Atlas focuses on the Middle East and a small area of Peru, and is derived from 1,024 CORONA images taken on 50 missions. The Atlas contains 833 archaeological sites.

“In regions like the Middle East, CORONA imagery is particularly important for archaeology because urban development, agricultural intensification, and reservoir construction over the past several decades have obscured or destroyed countless archaeological sites and other ancient features such as roads and canals. These sites are often clearly visible on CORONA imagery, enabling researchers to map sites that have been lost and to discover many that have never before been documented. However, the unique imaging geometry of the CORONA satellite cameras, which produced long, narrow film strips, makes correcting spatial distortions in the images very challenging and has therefore limited their use by researchers.”

Screenshot of the CORONA Atlas showing regions in the Middle East
with data available.

CAST reports that they have “developed methods for efficient 

orthorectification of CORONA imagery and now provides free public access to our imagery database for non-commercial use. Images can be viewed online and full resolution images can be downloaded in NITF format.”  

The can explore the CORONA Atlas & Referencing System here: https://corona.cast.uark.edu

Conducting commercial geospatial analytics over a broader period of time:

The firm Orbital Insight, founded in 2013, is an example of commercial firms that are mining geospatial data and developing valuable information products for a wide range of customers. Orbital Insight reports:

“Orbital Insight turns millions of images into a big-picture understanding of Earth. Not only does this create unprecedented transparency, but it also empowers business and policy decision makers with new insights and unbiased knowledge of socio-economic trends. As the number of Earth-observing devices grows and their data output expands, Orbital Insight’s geospatial analytics platform finds observational truth in an interconnected world. We map out and quantify the world’s complexities so that organizations can make more informed decisions.”

“By applying artificial intelligence to satellite, UAV, and other geospatial data sources, we seek to discover and quantify societal and economic trends on Earth that are indistinguishable to the human eye. Combining this information with terrestrial data, such as mobile and location-based data, unlocks new sources of intelligence.”

The Orbital Insight website is here: https://orbitalinsight.com/company/

5. Additional reading related to US optical reconnaissance satellites

You’ll find more information on the NRO’s film-return, optical reconnaissance satellites (KH-1 to KH-9) at the following links:

  • Robert Perry, “A History of Satellite Reconnaissance,” Volumes I to V, National Reconnaissance Office (NRO), various dates 1973 – 1974; released under FOIA and available for download on the NASA Spaceflight.com website, here: https://forum.nasaspaceflight.com/index.php?topic=20232.0

You’ll find details on NRO’s electronic optical reconnaissance satellites (KH-11, KH-12) at the following links:

6. Additional reading related to civilian use of declassified spy satellite imagery


Assessing Aral Sea depletion:

Assessing Antarctic ice sheet condition:

Assessing Himalayan glacier condition:

Discovering archaeological sites:

Arrokoth (originally named Ultima Thule) – The First Visit to a Kuiper Belt Object at the Fringe of Our Solar System

Peter Lobner

Updated 24 Jan and 12 Nov 2019

The National Aeronautics and Space Administration’s (NASA) durable New Horizon spacecraft made its close flyby of Pluto on 14 July 2015, passing 7,800 mi (12,500 km) above the surface of that dwarf planet and returning a remarkable trove of photos and data.  Since then, the spacecraft has been continuing its journey out of our solar system and now is flying through the Kuiper Belt, which is a very large, diffuse region beyond the orbit of Neptune containing millions of small bodies in distant orbits around the Sun.  These Kuiper Belt Objects (KBOs) are believed to be “leftovers” (i.e., they never coalesced into planets) from the formation of the early solar system.  You can read more about the Kuiper Belt on the NASA website here:


On 28 August 2015, NASA announced that it had selected the next destination for New Horizons after the Pluto flyby: a small KBO designated 2014 MU69, originally named Ultima Thule, about 1 billion miles (1.6 billion km) beyond Pluto.  The spacecraft’s trajectory from Earth to Ultima Thule is shown in the following NASA diagram.

Source: NASA, Johns Hopkins University Applied Physics Lab, Southwest Research Institute

On 1 January 2019, the New Horizons spacecraft made a close flyby of 2014 MU69, at a range of 2,200 miles (3,500 km) and a relative speed of 14 kilometers per second (31,317 mph). At a distance of 4.1 billion miles (6.6 billion km) from the Earth, radio signals took 6 hours and 6 minutes traveling at the speed of light to traverse the distance between the spacecraft and Earth during the encounter. On 1 January 2019, NASA released the following blurry image, which was taken at long range.

Credits: NASA/JHUAPL/SwRI; sketch courtesy of James Tuttle Keane

NASA reported: “At left is a composite of two images taken by New Horizons’ high-resolution Long-Range Reconnaissance Imager (LORRI), which provides the best indication of Ultima Thule’s size and shape so far. Preliminary measurements of this Kuiper Belt object suggest it is approximately 20 miles long by 10 miles wide (32 kilometers by 16 kilometers). An artist’s impression at right illustrates one possible appearance of Ultima Thule, based on the actual image at left. The direction of Ultima’s spin axis is indicated by the arrows. “

In the weeks following the flyby, New Horizons will be downloading all of the higher-resolution photos and data acquired during its close encounter with 2014 MU69 and we’ll be getting a much more detailed understanding of this KBO. 

It appears that NASA has the opportunity to target one or more additional KBOs for future New Horizons flybys in the 2020s.  The spacecraft’s electric power source, a plutonium (Pu-238)-fueled radioisotope thermoelectric generator (RTG), is capable of providing power well into the 2030s, albeit at gradually reducing power levels.  In addition, the spacecraft has significant hydrazine fuel remaining for course correction and attitude control en route to a future KBO flyby.

On 2 January 2019, NASA released the following photo taken on the inbound leg of the flyby, still 18,000 miles (28,000 km) from 2014 MU69.

Source: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

You’ll find more information on NASA’s New Horizons mission here:


24 January 2019 Update:  Latest photo shows 2014 MU69 surface to be unusually smooth

Today, NASA released the following photo of 2014 MU69, taken at a distance of 4,200 miles (6,700 kilometers) on 1 January 2019, just seven minutes before closest approach.  Principal Investigator Alan Stern, of the Southwest Research Institute, reported, “Over the next month there will be better color and better resolution images that we hope will help unravel the many mysteries of Ultima Thule.”

Source: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

12 November 2019:  2014 MU69 renamed

NASA announced that 2014 MU69 was formally renamed “Arrokoth”, which NASA says “means ‘sky’ in the language of the Powhatan people, a Native American tribe indigenous to Maryland. The state is home to New Horizons mission control at the Johns Hopkins University Applied Physics Laboratory in Laurel.”  Here’s a colorized view of Arrokoth. 

Source: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Near-Earth Object (NEO) Sky Surveys and Data Analysis are Refining our Understanding of the Risk of NEO Collisions with Earth

Peter Lobner

It seems that every week or two there is a news article about another small asteroid that soon will pass relatively close to the Earth. Most were detected while they were still approaching Earth. Some were first detected very shortly before or after their closest approach to Earth. That must have made the U.S. Planetary Defense Officer a bit nervous, but then, what could he do about it? (See my 21 January 2016 post, “Relax, the Planetary Defense Officer has the watch”).

While we currently can’t do anything to defend against NEOs, extensive worldwide programs are in place to identify and track NEOs and predict which NEOs may present a future hazard to the Earth. Here’s a brief overview of the following programs.

  • NASA Wide-field Infrared Survey Explorer (WISE)
  • International Astronomical Union’s (IAU’s) Minor Planet Center (MPC)
  • NASA’s Center for Near Earth Object Studies (CNEOS)
  • National Optical Astronomy Observatory (NOAO) NEO sky survey
  • University of Arizona Lunar and Planetary Laboratory

NASA’s Wide-field Infrared Survey Explorer (WISE)

WISE was an Earth orbiting infrared-wavelength astronomical space telescope with a 40 cm (16 in) diameter primary mirror. WISE operated from December 2009 to February 2011 and performed an “all-sky” astronomical imaging survey in the 3.4, 4.6, 12.0 and 22.0 μm wavelength bands. NASA’s home page for the WISE / NEOWISE mission is at the following link:


NEOWISE is the continuing NASA project to mine the WISE data set. An important data mining tool is the WISE Moving Object Processing System (WMOPS), which has been optimized to enable extraction of moving objects at lower signal-to-noise levels. A comet detection is shown in the following multiple images that have been combined to show the comet in four different positions relative to the fixed background stars.

Comet C/2013 A1 Siding Spring. Source: NASA/JPL-Caltech

To date, the NEOWISE data mining effort has resulted in the following:

  • Detection of ~158,000 asteroids at thermal infrared wavelengths, including ~700 near-Earth objects (NEOs) and ~34,000 new asteroids, 135 of which are NEOs.
  • Detection of more than 155 comets, including 21 new discoveries.
  • Determination of preliminary physical properties such as diameter and visible albedo for nearly all of these objects.
  • Estimation of the numbers, sizes, and orbital elements of NEOs, including potentially hazardous asteroids
  • Results have been published, enabling a range of other studies of the origins and evolution of the small bodies in our solar system.

The output from NEOWISE is delivered to NASA’s Planetary Data System (PDS), which NASA describes as follows:

“The PDS archives and distributes scientific data from NASA planetary missions, astronomical observations, and laboratory measurements. The PDS is sponsored by NASA’s Science Mission Directorate. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research. All PDS data are publicly available and may be exported outside of United States under ‘Technology and Software Publicly Available’ (TSPA) classification.”

The link to the NASA Planetary Data System is here:


International Astronomical Union’s (IAU’s) Minor Planet Center (MPC)

The MPC describes itself as the “single worldwide location for receipt and distribution of positional measurements of minor planets, comets and other irregular natural satellites of the major planets. The MPC is responsible for the identification, designation and orbit computation for all of these objects.”

The MPC home page is here:


On this website, MPC lists the following 2017 summary statistics:

Source: MPC

The MPC website offers several short videos that explain the NEO hazard and the challenges of detecting these small objects and determining their orbital parameters with high precision. Key points made in the MPC videos include:

  • The Earth’s cross-section represents only 1/10,000th of the area of the near-Earth region. Earth is a relatively small target area for a NEO.
  • To determine if a NEO is a potential hazard, its orbital parameters must be established with a precision of greater than 1/100th of 1%.
  • There is a “zone of discoverability” (green area in the following diagram) that varies primarily by the size of the object and the aspect of its lighted side to observers on Earth. If an object is outside this rather small zone, then current sky survey instruments cannot detect the object. An example is the 15 February 2013 atmospheric blast that occurred near Chelyabinsk, Russia. This event was caused by a previously undetected NEO that approached Earth at a high relative velocity from the direction of the Sun and vaporized in the Earth’s atmosphere.

            Zone of discoverability (green area). Source: screenshot from MPC video “Asteroid Hazards, Part 2: The Challenge of Detection”

 NASA’s Center for Near Earth Object Studies (CNEOS)

CNEOS is NASA’s center for computing asteroid and comet orbits with high precision and estimating the probability of a future Earth impact. CNEOS is operated by the California Institute of Technology (Caltech) Jet Propulsion Laboratory (JPL) and supports NASA’s Planetary Defense Coordination Office.

The CNEOS home page is here:


CNEOS is the home of JPL’s Sentry and Scout programs:

  • The Sentryimpact monitoring system performs long-term analyses of possible future orbits of hazardous asteroids, searching for impact possibilities over the next century.
  • TheScout system monitors the IAU’s MPC database for new potential asteroid discoveries and computes the possible range of future motions even before these objects have been confirmed as discoveries.

The average distance between the Earth and the moon is about 238,855 miles (384,400 km), which equals 1 LD. On the CNEOS website, you can view data on NEO close approaches to Earth at the following link:


By adjusting the table settings and sorting by a specific column heading, you can create customized views of the close approach data. Just looking at data from the past year for NEOs that passed Earth within 1 LD yielded the following results:

  • 48 NEOs passed within 1 LD of Earth.
  • For these NEOs, object diameters were in the range from 1.8 to 83 meters (5.9 to 272 feet). The NEO that caused the 2013 Chelyabinsk blast was estimated to have a diameter of 10 to 20 meters (32.8 to 65.6 feet).
  • Their relative velocities were in the range from 4.02 to 23.97 km/s (8,992 to 53,620 mph). The NEO that caused the 2013 Chelyabinsk blast was estimated to have a relative velocity of 19.16 km/s (45,860 mph).
  • In the past year, the closest approach was by object 2017 GM, which had a “CA Distance Minimum” (3-signa estimate, measured from Earth center to NEO center) of 0.04 LD, or 15,376 km (9,554 miles). After subtracting Earth’s radius of 6,371 km (3,959 miles), object 2017 GM cleared the Earth’s surface by 9,005 km (5,595 miles).

Looking into the future, the CNEOS close approach data shows two objects that currently have values of “CA Distance Minimum” that are less than the radius of the Earth, indicating that impact is possible:

  • Object 2012 HG2: close approach date on 13 February 2047; modest size of 11 – 24 meters (36 – 79 feet); low relative velocity of 4.36 km/sec (9,753 mph)
  • Object 2010 RF12: close approach date of 6 September 2095; modest size of 6.4 – 14 meters (21 to 46 feet); modest relative velocity of 7.65 km/sec (17,112 mph)

So it looks like we have less than 30 years to refine the orbital data on object 2012 HG2, determine if it will impact Earth, and, if so, determine where the impact will occur and what mitigating actions can be taken. Hopefully, the U.S. Planetary Defense Officer is on top of this matter.

National Optical Astronomy Observatory (NOAO) NEO sky survey

On 30 August 2017, NOAO issued a press release summarizing the results of a survey of NEOs conducted using the Dark Energy Camera (DECam) on the 4 meter (157.5 inch) Blanco telescope at the Cerro Tololo Inter-American Observatory in northern Chile.

“Lori Allen, Director of the Kitt Peak National Observatory and the lead investigator on the study, explained, ‘There are around 3.5 million NEOs larger than 10 meters, a population ten times smaller than inferred in previous studies. About 90% of these NEOs are in the Chelyabinsk size range of 10-20 meters.’”

“David Trilling, the first author of the study,…explained…..‘If house-sized NEOs are responsible for Chelyabinsk-like events, our results seem to say that the average impact probability of a house-sized NEO is actually ten times greater than the average impact probability of a large NEO.’”

You can read the NOAO press release here:


You can read the draft paper, “The size distribution of Near Earth Objects larger than 10 meters,” (to be published in Astronomical Journal) here.


University of Arizona Lunar and Planetary Laboratory

In October 2017, astronomer Vishnu Reddy presented data on an intriguing NEO known as 2016 HO3, that is a “quasi-satellite” of Earth. The announcement is here:


As a “quasi-satellite,” 2016 HO3 is not gravitationally bound to Earth, but its solar orbit keeps 2016 HO3 in relatively close proximity to Earth, but in a slightly different orbital plane. As both bodies orbit the Sun, the motion of 2016 HO3 relative to the Earth gives the appearance that 2016 HO3 is in a distant halo orbit around Earth. The approximate geometry of this three body system is shown in the following diagram, with 2016 HO3’s solar orbit represented in red and the halo orbit as seen from Earth represented in yellow.

Source: www.EarthSky.org

You’ll find a video showing the dynamics of 2016 HO3’s halo orbit on the EarthSky website at the following link:


Observations of 2016 HO3 were made from the Large Binocular Telescope Observatory (LBTO), which is located on Mt. Graham in Arizona. You’ll find details on LBTO at the following link:


Key parameters for 2016 HO3 are: diameter: 100 meters (330 feet); distance from Earth: 38 to 100 LD; composition appears to be the same material as other asteroid NEOs. With its stable halo orbit, there is no risk that 2016 HO3 will collide with Earth.

For additional reading on NEO discovery:

Myhrvold, “Comparing NEO Search Telescopes,” Astronomical Society of the Pacific, April 2016


“I use simple physical principles to estimate basic performance metrics for the ground-based Large Synoptic Survey Telescope and three space-based instruments— Sentinel, NEOCam, and a Cubesat constellation.”


S.R. Chesley & P. Vereš, “Projected Near-Earth Object Discovery Performance of the Large Synoptic Survey Telescope,” JPL Publication 16-11, CNEOS, April 2017


“LSST is designed for rapid, wide-field, faint surveying of the night sky ….The baseline LSST survey approach is designed to make two visits to a given field in a given night, leading to two possible NEO detections per night. These nightly pairs must be linked across nights to derive orbits of moving objects…… Our simulations revealed that in 10 years LSST would catalog 60% of NEOs with absolute magnitude H < 22, which is a proxy for 140 m and larger objects.”


56 Years Ago: Yuri Gagarin Became the First Person in Space

Peter Lobner

On 12 April 1961, the Soviet Union launched the Vostok 1 (“East” 1) spacecraft and astronaut Major Yuri Gagarin from a launch site in Kazakhstan on the first ever manned space mission. Gagarin became the first person to fly above the Karman line that marks the beginning of space, at 62 miles (330,000 feet, 100 km) above the Earth. He also became the first person to achieve Earth orbit.

Yuri Gagarin. Source: Daily Mail

Basic orbital parameters for Vostok 1 were: apogee: 203 miles (327 km), perigee: 117 miles (189 km), and orbital period: 89.1 minutes. Gagarin completed one orbit. After re-entry, Gagarin ejected from the Vostok capsule at an altitude of about 4.3 miles (7 km) and parachuted to the ground. The capsule descended under its own parachute and was recovered near Engels, Russia. Gagarin’s total flight time was 1 hour, 48 minutes.

The path of Gagarin’s historic flight, including important flight milestones, is shown on the following map:

Source: http://space.stackexchange.com/

The configuration of the Vostok spacecraft is shown in the following diagram. The reentry vehicle is the spherical capsule, which on the left is shown attached to the instrument module.

Vostok 1 configuration.  Source: Pinterest

The complete spacecraft had a mass of 4.73 tons (4,300 kg) and measured 14.4 feet (4.4 meters) in length and 8 feet (2.43 meters) in diameter. The placement of the spacecraft inside the nose shroud of the launch vehicle is shown in the following diagram.

Source: http://www.rocketryforum.com/showthread.php?49802-Dr-Zooch-Vostok-build-thread

Yuri Gagarin’s Vostok I capsule is on display at the RKK Energiya museum, which is on the grounds of the RKK Energiya factory in Korolyov, near Moscow. Gagarin died in a jet training flight on 27 March 1968.

Vostok 1 capsule. Source: SiefkinDR – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=12403404

The Soviet’s Vostok launch vehicle was unveiled to the public at the June 1967 Paris Air Show. This was a big launch vehicle for the time, with a length of 126 feet (38.4 m) and a diameter of about 35 feet (10.7 m).

Soviet Vostok launcher mockup at 1976 Paris Air Show. Source: http://www.theaviationhistorian.com

The Vostok launcher, designed by Sergei Korolov, was based on the Soviet R-7 (Semyorka) intercontinental ballistic missile (ICBM). Earlier versions of the R-7 were used to put the first man-made satellite, Sputnik 1, in Earth orbit on 4 October 1957 and to launch the early Luna spacecraft that, in 1959, achieved the milestones of first spacecraft to escape Earth’s gravity and enter a solar orbit (Luna 1) and first spacecraft to impact the Moon (Luna 2).

About one month after Gagarin’s milestone orbital flight, U.S. Project Mercury astronaut Alan Shepard was launched on 5 May 1961 by a Mercury-Redstone booster on a 15-minute suborbital flight. In the Freedom 7 capsule, Shepard reached a maximum altitude of 116.5 miles (187.5 km) and was recovered about 302 miles (487 km) downrange from Cape Canaveral after landing in the Atlantic Ocean. The Freedom 7 capsule is on display in the museum at the John F. Kennedy Presidential Library on Columbia Point in Boston, on loan from the Smithsonian National Air and Space Museum. Alan Shepard died on 21 July 1998.

On 20 February 1962, astronaut John Glenn became the first American to reach Earth orbit. The Mercury-Atlas booster placed the Friendship 7 capsule and Glenn into a low Earth orbit with the following basic parameters: apogee: 154 miles (248 km), perigee: 87 miles (140 km), and orbital period: 88.5 minutes. Glenn completed three orbits in a flight lasting 4 hours and 55 minutes, with recovery in the Atlantic Ocean. The Friendship 7 capsule is on display at the Smithsonian National Air and Space Museum, Washington D.C. John Glenn died on 8 December 2016.

A comparison of the Mercury and Vostok reentry capsules is shown in the following scale diagram.

Source: http://abyss.uoregon.edu/~js/space/lectures/lec08.html

So here we are, 56 years later and some things haven’t changed. Just as in 1961, the U.S. has no means of its own to send astronauts into Earth orbit. The first orbital test of an unmanned SpaceX Dragon 2 spacecraft, launched by a SpaceX Falcon booster, is scheduled for November 2017, with the first crewed mission occurring in 2018. When it occurs, this manned Dragon 2 mission will be the first U.S. manned spacecraft to reach orbit since the last Space Shuttle flight in 2011. Dragon 2 will provide regular service to replace International Space Station (ISS) crews and to perform other orbital missions requiring a crew. In the meantime, the U.S. depends on Russia and their Soyuz spacecraft to deliver and return crews from the ISS. Soyuz is a larger, more modern version of the basic Vostok spacecraft and spherical reentry capsule. You can find out more about the Soyuz spacecraft currently serving the ISS on the National Aeronautics and Space Administration (NASA) website at the following link:


NASA’s manned space program will take even longer to resume manned spaceflight missions. The first launch of NASA’s Space Launch System (SLS) with the new Orion multi-purpose crew vehicle currently is expected to occur in 2018. As currently planned, the Exploration Mission 1 (EM-1) will be an unmanned mission. NASA is considering making EM-1 a manned mission and launching in 2019.

Reusable Space Launch Vehicles are Becoming a Reality

Peter Lobner

In my 12 April 2016 post, “Landing a Reusable Booster Rocket on a Dime,” I discussed the first successful flights and recoveries of the SpaceX Falcon 9 orbital booster rocket and Blue Origin’s New Shepard suborbital booster rocket. In the past year, both SpaceX and Blue Origin have successfully launched and recovered several rockets. In addition, SpaceX and Blue Origin both have reused one or more booster rockets that were flown on previous missions.

Here’s a quick look at the SpaceX and Blue Origin track records and their future plans for even more ambitious recoverable launch vehicles. We’ll also take a brief look at what competitors are doing with their existing and planned launch vehicles.

SpaceX reusable booster rockets: Falcon 9 v1.2, Falcon Heavy, and Interplanetary Transport System

The Falcon 9 v1.2 is the current, operational version of this commercial, medium-lift, two-stage family of launch vehicles. This booster has a length of 230 ft (70 m) with the payload fairing and a booster diameter of 12 ft (3.66 m). The first stage generates 1.7 million pounds of thrust from seven Merlin engines burning liquid oxygen (LOX) and RP-1 kerosene. The second stage uses a single Merlin engine optimized for vacuum conditions. The Falcon 9 v1.2 specified payload mass is:

  • 50,265 pounds (22.8 metric tons, 22,800 kg) to Low Earth Orbit (LEO),
  • 18,298 pounds (8.3 metric tons, 8,300 kg) to Geosynchronous Transfer Orbit (GTO), or
  • 8,862 pounds (4.02 metric tons, 4,020 kg) to escape velocity.

Falcon Heavy is an advanced heavy-lift, two-stage launch vehicle with a first stage comprised of three Falcon 9 booster rockets. The first stage generates 5.1 million pounds of thrust from 21 Merlin engines. The Falcon Heavy specified payload mass is:

  • 119,931 pounds (54.4 metric tons, 54,400 kg) to LEO,
  • 48,942 pounds (22.2 metric tons, 22,200 kg) to GTO, or
  • 29,983 pounds (13.6 metric tons, 13,600) kg to escape velocity.

The first Falcon Heavy is expected to be launched in late 2017.

The Falcon 9 v1.2 family and the Falcon Heavy launch vehicles are shown in the following diagram. The scale-up from Falcon 9 V1.2 to Falcon Heavy is relatively straightforward. Versions designed for recovering the first stage include four extendable landing legs near the base of the rocket. In the diagram below, you can see that one version of the Falcon 9 does not include the landing legs, sacrificing booster recovery for greater booster performance.

  Source: SpaceX   

SpaceX describes their Falcon 9 booster recovery process as follows:

“After being jettisoned, the first stage (autonomously) initiates a flip maneuver and begins a powered return back to Earth. Using a combination of reaction control thrusters, forward-mounted grid fins, and thrust from one to three of the main engines, the first stage flies either to a remotely-operated ship in the Atlantic (or Pacific) Ocean, or to land. Upon arrival, the vehicle deploys a set of landing legs and sets itself down upright.”

In practice, SpaceX expects to recover about 1/3 of its boosters on land, back near the launch site. Boosters for most of the remaining missions (primarily the higher-energy missions) will be recovered on a downrange drone ship. You can watch a short video explaining these two mission profiles at the following link:


A recovered Falcon 9 first stage booster rocket is very large:

  • overall length of about 151 ft (46 m) in landing configuration,
  • dry mass is about 50,706 pounds (23,000 kg), and
  • estimated total mass is 94,578 pounds (42,900 kg) with 5% residual fuel after landing.

The large scale of the Falcon 9 booster is apparent in the following photo taken after a landing on the stationary drone ship.

Source: SpaceXSource: Ken Kremer/kenkremer.com

You can see a video of the January 2017 Falcon 9 v1.2 launch and booster recovery at the following link:


The SpaceX mission on 30 March 2017 marked two important milestones:

  • The first reuse of a Falcon 9 booster stage, which was recovered on the drone barge and will be available again for reuse.
  • The first recovery of the costly (about $6 million) payload fairing, which was jettisoned during ascent and returned under parachute for an ocean splashdown.  The payload fairing will be reused.

As of 3 April 2017, the SpaceX Falcon 9 scorecard is:

  • Thirteen booster recoveries attempted
  • Three successful recoveries on land; first in December 2015
  • Six successful recoveries on a drone ship at sea, first in April 2016
  • Four drone ship recovery failures
  • One booster stage reused

The number of times a Falcon 9 first stage can be re-flown is not clearly specified. However, Elon Musk placed that number at 10 – 20 additional missions, and, with minor refurbishment, up to 100 missions.

Falcon Heavy missions will involve considerably more complex, simultaneous, autonomous booster recovery operations. The port and starboard Falcon 9 boosters will separate first and fly to designated recovery points, likely on land. The core booster will burn longer before separating from the second stage, which will take the payload into orbit. After separation, the core Falcon 9 booster also will fly to a designated recovery point, likely on a downrange drone ship. After a Falcon Heavy launch, it literally will be raining Falcon 9 boosters. This will be a spectacular demonstration of autonomous flight control and range safety.

You’ll find a list of Falcon 9 and Falcon Heavy launches, booster recovery status, and future missions at the following link:


SpaceX has been developing the recoverable Dragon space capsule as a family of spacecraft to be launched by the Falcon booster to conduct a variety of orbital and interplanetary missions. Like the recoverable Falcon booster, the Dragon capsule uses aerodynamic forces to slow its descent into the atmosphere and rocket propulsion for the final landing phase.

  • Dragon CRS: Since October 2012, this unmanned cargo version of the Dragon space capsule has been conducting Commercial Resupply Service (CRS) missions to the International Space Station (ISS) and returning cargo to Earth.
  • Dragon CRS “free-flyer”: The Dragon capsule also can operate independently in Earth orbit carrying a variety of payloads and returning them to Earth.
  • Dragon 2: This is a human-rated version of the Dragon space capsule. The first manned orbital flight in expected 2018.
  • Red Dragon: This is an unmanned version of Dragon 2 adapted for a mission to Mars and launched by a Falcon Heavy. Red Dragon is designed to make a propulsive landing on Mars’ surface with a 2,200 pound (1,000 kg) payload. The first launch of a Red Dragon mission could occur as early as 2018. Thereafter, SpaceX plans to conduct “regular “ (as suitable launch windows occur) Red Dragon missions to Mars.

The SpaceX Interplanetary Transport System (ITS) is a concept for an enormous launch vehicle, a manned interplanetary spacecraft, and a tanker spacecraft for refueling the interplanetary spacecraft in Earth orbit before starting the interplanetary phase of the mission. ITS will enable transportation of a large crew and equipment to Mars starting in the late 2020s. Later, when propellant plants have been established on distant bodies in the solar system, the ITS interplanetary spacecraft will be able to refuel in deep space and journey beyond Mars. The ITS is “conceptualized to be fully reusable with 1,000 uses per booster, 100 uses per tanker and 12 round trips to Mars with one spacecraft over a period of over 25 years.”

As shown in the following diagram, the ITS booster rocket carrying the interplanetary spacecraft is much larger than the National Aeronautics and Space Administration’s (NASA) Saturn V used in the 1960s and 1970s on the Apollo lunar missions. At launch, the ITS will be 400 ft (122 m) tall and 39.4 ft (12 m) in diameter.

  ITS & Saturn V. Source: SpaceX

 With 42 Raptor sub-cooled liquid methane / liquid oxygen engines, the first stage will have a liftoff thrust of about 26 million pounds, which is more than three times the thrust of Saturn V. This engine configuration is reminiscent of the Soviet N-1 moon rocket, (circa late 1960s), which clustered 30 engines in a similar configuration.

  ITS 1st stage Raptor engines. Source: SpaceX

The ITS specified payload mass is:

  • 1 million pounds (500 metric tons, 500,000 kg) to LEO with a fully expendable booster, or
  • 661,000 pounds (300 metric tons, 300,000 kg) to LEO with a reusable booster

ITS can lift ten times the payload of the Falcon Heavy booster.

The first stage of the ITS launch vehicle will be designed to fly back to the launch site for rapid servicing and reuse (i.e., to launch the refueling tanker spacecraft). In landing configuration, the ITS booster stage will be about 254 ft (77.5 m) long with a dry mass of about 275 tons (25 metric tons, 250,000 kg).

You can watch Elon Musk’s briefing on the ITS concept, including a short video of the ITS launch and interplanetary mission profile, at the following link.


Can you spell A M B I T I O U S? The SpaceX ITS concept certainly is ambitious, but it offers a much more compelling vision of future manned spaceflight than anything NASA has offered over the past decade.

Blue Origin reusable booster rockets: New Shepard and New Glenn

New Shepard is a small, single stage, suborbital rocket intended for research and commercial passenger service to the fringe of space, above the Karman line at 62 miles (330,000 ft, 100 km) above the Earth. New Shepard is named for Project Mercury astronaut Alan Shepard, who, on 5 May 1961, made the first U.S. suborbital flight in the Freedom 7 capsule launched from Cape Canaveral by a Redstone rocket. The New Shepard, in launch and recovery configurations, is shown in the following figure.

Source: https://www.stlfinder.com/3dmodels/Besos

You can see a short video showing the June 2016 fourth launch and recovery of the New Shepard booster and capsule at the following link:


As of 3 April 2017, the New Shepard scorecard is:

  • Six booster recoveries attempted
  • Five successful recoveries on land; first in November 2015
  • One booster recovery failure
  • One booster stage recovered and used five times

In all of these New Shepard unmanned test flights, the passenger capsule was recovered.

Blue Origin expects to conduct the first manned tests of New Shepard in late 2017. Commercial passenger flights, with up to six people in the space capsule, could begin in 2018.  Blue Origin has stated that they may be able to conduct as many as 50 New Shepard flights per year.

You’ll find a list of New Shepard launches and booster recovery status, at the following link:


On 29 March 2017, the National Aeronautic Association (NAA) announced that it selected Blue Origin New Shepard to receive the prestigious 2016 Robert J. Collier Trophy. The award reads:

“… for successfully demonstrating rocket booster reusability with the New Shepard human spaceflight vehicle through five successful test flights of a single booster and engine, all of which performed powered vertical landings on Earth.”

You can read the complete NAA press release at the following link:


On 12 September 2016, Jeff Bezos announced Blue Origin’s plans to develop New Glenn, which is a very large, heavy-lift, 2- or 3-stage reusable launch vehicle. New Glenn is named for Project Mercury astronaut John Glenn, who, on 20 February 1962, became the first U.S. astronaut to reach orbit. John Glenn flew in the Friendship 7 capsule launched from Cape Canaveral by an Atlas rocket.

The size of New Glenn is apparent n the following diagram. The two-stage version will be 270 ft (82 m) tall, and the three-stage version will be 313 ft (95 m) tall, approaching the size of NASA’s Saturn V.

Source: Blue Origin

 The New Glenn first stage is powered by seven BE-4 methane / LOX engines rated at a combined 3.85 million pounds of thrust (about ½ of the Saturn V), the second stage is powered by a single BE-4 engine optimized for vacuum conditions and rated at 550,000 pounds of thrust, and the third stage is powered by one BE-3 liquid hydrogen / LOX engine rated at 110,000 pounds thrust. The BE-4 engines in the reusable first stage are designed with a 100-flight lifetime.

A more detailed size comparison between New Shepard, Falcon 9 and New Glenn is shown in the following diagram.

  Source: zisadesign I /u/zisa

The scale-up from New Shepard, which is not yet operational, to New Glenn is tremendous. The specified payload mass for the two-stage version of New Glenn is:

  • 99,000 pounds (45 metric tons, 45,000 kg) to LEO,
  • 29,000 pounds (13 metric tons, 13,000 kg) to GTO

The three-stage New Glenn will carry heavier payloads.

The first stage of the New Glenn booster is being designed to fly to a designated landing site to be recovered. Aerodynamic surfaces on the first stage will give New Glenn more aerodynamic maneuvering capability than the SpaceX Falcon during the descent to landing. On 7 March 2017, Jeff Bezos gave the following details on the recovery of the first stage.

“Those aerodynamic surfaces allow us to operate with very high availability in very high wind conditions……..We don’t want to constrain the availability of launch based on the availability of the landing of the reusable booster. We put a lot of effort into letting the vehicle fly back with aerodynamic surface control instead of with propulsion.”

Of course, rocket propulsion is needed for the final phase of landing on a large, moving platform at sea. The first stage has six extendable landing legs, and can land safely if only five deploy.

New Glenn landing. Source: Blue Origin

You’ll find a short animated video showing the launch and recovery process for New Glenn at the following link:


New Glenn flights are expected to start in 2020, about three years after the first SpaceX Falcon Heavy flight.

What are other launch vehicle competitors doing?

No other operational or planned launch vehicles offer the extent of reusability found in the SpaceX Falcon and ITS and the Blue Origin New Shepard and New Glenn. The following launch vehicles will offer only partial reusability.

NASA: partially-reusable Space Launch System (SLS)

 NASA is developing the SLS to launch heavy payloads into Earth orbit and to launch the Orion manned spacecraft on a variety of near-Earth and deep space missions. As shown in the following diagram,  the SLS booster rocket has a large, liquid-fueled, two-stage core flanked by two large solid rocket boosters manufactured by Orbital ATK.

SLS is designed to put 150,000 to 290,000 pounds (70,000 to 130,000 kg) into LEO.

SLS launch vehicle: Source: NASA

As with the NASA Space Shuttle, the solid rocket boosters are designed to be recovered and reused. However, the liquid-fueled first stage booster is expendable; not designed for reuse.

United Launch Alliance (ULA): partially-reusable Vulcan

ULA currently provides medium- and heavy-lift launch with the expendable Atlas V, Delta III and Delta IV boosters. In April 2015, ULA announced that they were developing Vulcan as their Next-Generation Launch System (NGLS) to support a wide variety of Earth-orbital and interplanetary missions. In August 2016, ULA announced plans to qualify Vulcan for manned space missions.

As shown in the following diagram, Vulcan is comprised of a liquid-fueled, two-stage core rocket that can be augmented with up to six solid rocket boosters as needed for the specific mission. This basic architecture is quite similar to ULA’s current Delta III booster, but on a larger scale.

Vulcan launch vehicle. Source: ULA

Vulcan’s maximum payload capacity is expected to fall between ULA’s current Atlas V and Delta IV boosters. ULA expects that “bare bones” Vulcan launch services will sell for half the price of an Atlas V, which is less costly to fly than the Delta IV.

The Vulcan first stage is not designed to be recovered as a unit and reused like the SpaceX Falcon. Instead, ULA is planning a future version that will be partially reusable. In this version, the engines will be designed to detach from the booster after engine cutoff, descend through the atmosphere inside a heat shield, and deploy a parachute for final descent and recovery.

European Space Agency (ESA): expendable Ariane 5 & partially-reusable Ariane 6

ESA’s current Ariane 5 medium- to heavy-lift booster has a two-stage, liquid-fueled core rocket flanked by two large solid rocket boosters. The basic configuration of Ariane 5 is shown in the following diagram. Ariane V is an expendable booster, not designed for reuse.

Ariane 5. Source: Arianespace

Ariane 5 first flew in June 1996 and has been employed on a wide variety of Earth orbital and interplanetary missions. Versions of Ariane 5 can deliver a payload of more than 44,000 pounds (20,000 kg) to LEO or 23,100 pounds (10,735 kg) to GTO.

In 2014, ESA announced the basic configuration of the Ariane 6 launch vehicle. Like Ariane 5, Arian 6 will have a two-stage, liquid-fueled core rocket flanked by solid rocket boosters.

Ariane 6.  Source: adapted from BBC

Two versions are being developed:

  • Ariane 62, with two solid rocket boosters capable of launching about 11,000 pounds (5,000 kg) to GTO
  • Ariane 64, with four solid rocket boosters capable of launching about 24,000 pounds (11,000 kg) to GTO

Ariane 62 and 64 are expendable boosters, not designed for reuse.

In 2015, Airbus Defense and Space announced plans to develop a partially reusable first stage named Adeline that could enter service on a future version of Ariane 6 in the 2025 – 2030 time frame. Like ULA’s plans for Vulcan, only the Ariane 6 first stage high-value parts (i.e., the engine) would be recovered for reuse.

Stratolaunch Systems: giant aircraft plus potentially reusable, air-launched rocket booster

Paul Allen’s firm Stratolaunch Systems is building what will become the world’s largest aircraft, for use as an airborne launch platform for a variety of booster rockets that will take small-to-medium payloads into Earth orbit. The Stratolaunch Carrier will have two fuselages, six jet engines, a length of 238 feet (72 m), and a wingspan of 385 feet (117 m). The giant plane is designed to carry a rocket and payload with a combined weight of up to 550,000 pounds (250,000 kg) to a launch altitude of about 30,000 ft (9,144 m). Payloads up to 13,500 pounds (6,136 kg) can be delivered to LEO. The Stratolaunch Carrier can fly more than 1,000 miles to reach the launch point, giving it unprecedented operational flexibility for delivering payloads to orbit. An example mission profile is shown in the following figure.

Source: Stratolaunch

In 2014, Sierra Nevada Corporation (SNC) announced that it planned to use Stratolaunch as the launch platform for a scaled version of its Dream Chaser reusable spacecraft, initially for unmanned missions and later for manned missions with up to three astronauts. As shown in the following concept drawing, Dream Chaser appears to mounted on a winged, recoverable booster rocket.  For more information on the Dream Chaser reusable spacecraft, visit the SNC website at the following link:


Stratolauncher Carrier with Dream Chaser. Source: Sierra Nevada

In 2014, a planned partnership between Stratolaunch Systems and SpaceX for an air-dropped version of the Falcon booster failed to materialize. In October 2016, Stratolaunch announced a partnership with Orbital ATK, which will provide Pegasus XL expendable boosters for use in launching small satellites into Earth orbit from the Stratolaunch aircraft.

The Stratolaunch Carrier was reported to be 76% complete in 2016. Stratolaunch Systems expects the aircraft to be operational by the end of this decade. You’ll find more information on Stratolaunch here:


Other launch systems

You’ll find a list of worldwide orbital launch systems at the following link.  Most of these are expendable launch systems.


A comparison of these orbital launch systems is available here:


Not included in the above list is the new Next Generation Launch (NGL) System announced by Orbital ATK on 6 April 2017. Two versions of this new, expendable, three-stage booster will be developed to handle medium-to-large payloads, roughly comparable to the payload capability of the SpaceX Falcon 9 reusable booster. The first two stages of the NGL System will be solid fueled.   First flight is planned for 2021. You’ll find a fact sheet on the NGL system at the following link:


In conclusion

In the highly competitive launch vehicle market, booster reusability should yield a significant economic advantage. In the long run, demonstrating better launch service economies will determine the success or failure of reusable launch vehicles.

While SpaceX and Blue Origin have demonstrated the technical ability to recover and reuse the first stage of a launch vehicle, they have not yet demonstrated the long-term economic value of that capability. In 2017, SpaceX plans to re-fly about six Falcon 9 v1.2 boosters, with even more recycled boosters to be launched in 2018. Blue Origin will likely start New Shepard passenger flights in 2018.

I’m betting that SpaceX and Blue Origin will be successful and reusable boosters will find a permanent role in reducing the price for delivering cargo and people into space.