Tag Archives: Lunar Reconnaissance Orbiter

The Moon has Never Looked so Colorful

Peter Lobner

On 20 April 2020, the U.S. Geological Survey (USGS) released the first-ever comprehensive digital geologic map of the Moon.  The USGS described this high-resolution map as follows:

“The lunar map, called the ‘Unified Geologic Map of the Moon,’ will serve as the definitive blueprint of the moon’s surface geology for future human missions and will be invaluable for the international scientific community, educators and the public-at-large.”

Color-coded orthographic projections of the “Unified Geologic Map of the Moon” showing the geology of the Moon’s near side (left) and far side (right).  Source:  NASA/GSFC/USGS

You’ll find the USGS announcement here:  https://www.usgs.gov/news/usgs-releases-first-ever-comprehensive-geologic-map-moon

You can view an animated, rotating version of this map here:  https://www.youtube.com/watch?v=f2Nt7DxUV_k

This remarkable mapping product is the culmination of a decades-long project that started with the synthesis of six Apollo-era (late 1960s – 1970s) regional geologic maps that had been individually digitized and released in 2013 but not integrated into a single, consistent lunar map. 

This intermediate mapping product was updated based on data from the following more recent lunar satellite missions:

  • NASA’s Lunar Reconnaissance Orbiter (LRO) mission:
    • The Lunar Reconnaissance Orbiter Camera (LROC) is a system of three cameras that capture high resolution black and white images and moderate resolution multi-spectral images of the lunar surface: http://lroc.sese.asu.edu
    • Topography for the north and south poles was supplemented with Lunar Orbiter Laser Altimeter (LOLA) data: https://lola.gsfc.nasa.gov
  • JAXA’s (Japan Aerospace Exploration Agency) SELENE (SELenological and ENgineering Explorer) mission:

The final product is a seamless, globally consistent map that is available in several formats: geographic information system (GIS) format at 1:5,000,000-scale, PDF format at 1:10,000,000-scale, and jpeg format.

At the following link, you can download a large zip file (310 Mb) that contains a jpeg file (>24 Mb) with a Mercator projection of the lunar surface between 57°N and 57°S latitude, two polar stereographic projections of the polar regions from 55°N and 55°S latitudes to the poles, and a description of the symbols and color coding used in the maps.

https://astrogeology.usgs.gov/search/map/Moon/Geology/Unified_Geologic_Map_of_the_Moon_GIS_v2

These high-resolution maps are great for exploring the lunar surface in detail. A low-resolution copy (not suitable for browsing) is reproduced below.

For more information on the Unified Geologic Map of the Moon, refer to the paper by C. M. Fortezzo, et al., “Release of the digital Unified Global Geologic Map of the Moon at 1:5,000,000-scale,” which is available here:  https://www.hou.usra.edu/meetings/lpsc2020/pdf/2760.pdf

The Story Behind the Apollo 8 Earthrise Photo

Peter Lobner

You’ve all seen the iconic, first-ever photo of Earthrise as seen from lunar orbit.

NASA Earthrise Source: NASA

This photo was taken during the first lunar orbital mission, Apollo 8, on 24 December 1968 by astronaut Bill Anders, with help from the other Apollo 8 crew members, Frank Borman and Jim Lovell.

NASA Goddard Spaceflight Center has reconstructed the events surrounding that historic photo using detailed lunar maps prepared from current Lunar Reconnaissance Orbiter (LRO) data, along with the photos taken by the Apollo 8 astronauts, data on the orientation and maneuvers of the Apollo 8 spacecraft, and the actual recorded conversations among the astronauts.

I think you will enjoy NASA Goddard’s 7-minute video reconstruction, which you can view at the following link:

https://www.youtube.com/embed/dE-vOscpiNc

Now, 47 years later, that photo is no less inspirational than it was the day it was first published. Thank you, Apollo 8, for a enduring Christmas present.