In my 2016 post, “Remarkable Multispectral View of Our Milky Way Galaxy, “ I started by recalling the following lyrics from the 1968 Moody Blues song, “The Word,” by Graeme, Edge, from the album “In Search of the Lost Chord”:
This garden universe vibrates complete
Some, we get a sound so sweet
Vibrations reach on up to become light
And then through gamma, out of sight
Between the eyes and ears there lie
The sounds of color and the light of a sigh
And to hear the sun, what a thing to believe
But it’s all around if we could but perceive
To know ultraviolet, infrared and X-rays
Beauty to find in so many ways.
Well, NASA actually has done this thru their Sonification Project, which they explain as follows:
“Much of our Universe is too distant for anyone to visit in person, but we can still explore it. Telescopes give us a chance to understand what objects in our Universe are like in different types of light. By translating the inherently digital data (in the form of ones and zeroes) captured by telescopes in space into images, astronomers can create visual representations of what would otherwise be invisible to us. But what about experiencing these data with other senses, like hearing? Sonification is the process that translates data into sound. Our new project brings parts of our Milky Way galaxy, and of the greater Universe beyond it, to listeners for the first time. We take actual observational data from telescopes like NASA’s Chandra X-ray Observatory, Hubble Space Telescope or James Webb Space Telescope and translate it into corresponding frequencies that can be heard by the human ear.”
I hope you’ll enjoy NASA’s ” Universe of Sound” website, which includes sonifications of more than 20 astronomical targets, each with descriptions of the target and details on how the sonification was made. Start your audio exploration of the Milky Way galaxy and the Universe beyond here: https://chandra.si.edu/sound/
Good luck trying to pick a favorite.
Many of NASA’s sonifications also are available individually on YouTube. Here are two very different samples:
“A Quick Look at Data Sonification: Sounds from Around the Milky Way,” (1.12 min), posted by Chandra X-Ray Observatory, 22 September 2020: https://www.youtube.com/watch?v=rqigxT_ld4k
In November 2022, the Congressional Research Service (CRS) published an update to their document, “Defense Primer: U.S. Policy on Lethal Autonomous Weapon Systems,” which is available on the CRS website here: https://s3.documentcloud.org/documents/23310494/if11150.pdf
Each of the US military services has its own autonomous vehicle / weapons system programs. Following is a brief roadmap to those programs.
See my April 2016 post, “Large Autonomous Vessels will Revolutionize the U.S. Navy,” for background information on the Navy’s autonomous vessel program and the Sea Hunter prototype developed by Leidos and tested in San Diego: https://lynceans.org/tag/continuous-trail/
The Navy’s San Diego-based Unmanned Surface Vessel Division One is playing an important role in developing and testing several autonomous vessels.
For more information on the Navy’s autonomous vessel program, check out these US Naval Institute articles:
In July 2022, CRS provided an overview of unmanned and autonomous aerial system in their report, “Unmanned Aircraft Systems: Roles, Missions, and Future Concepts,” which you’ll find here: https://crsreports.congress.gov/product/pdf/R/R47188
As you can see, there’s a lot going on in this field and capabilities for use of lethal autonomous systems may soon challenge limits set by present policy.
NASA’s Double Asteroid Redirection Test (DART), which was launched on 24 November 2021, was the first test of a technology for defending Earth against potential asteroid or comet hazards. DART’s target was the small “moonlet” named Dimorphos orbiting the larger near-Earth asteroid Didymos, which itself is only a half mile in diameter. You can explore at the Didymos – Dimorphos binary system on NASA’s Solar System Exploration webpage here: https://solarsystem.nasa.gov/asteroids-comets-and-meteors/asteroids/didymos/in-depth/
The goal is for the DART spacecraft was to strike the moonlet Dimorphos at high speed while being trailed by another small spacecraft, the Italian Space Agency’s (ASI) cubesat, dubbed LICIACube, that would directly observe the encounter and report back to NASA and ASI.
By comparing pre- and post-impact measurements made with powerful Earth-based and orbiting telescopes, the NASA / Johns Hopkins Applied Physics Lab (JHAPL) team could determine what changes occurred to Dimorphos’ orbit around Didymos. These results will help assess the feasibility of using a high-energy impactor as a tool for deflecting the trajectory of an asteroid, particularly one that represents a significant risk to Earth. Learn more about the DART spacecraft and its mission objectives on NASA’s Planetary Defense Coordination Office website here: https://www.nasa.gov/planetarydefense/dart/dart-news
NASA successfully guided DART to a collision with Dimorphos on 26 September 2022. You can watch the final five minutes of DART’s approach to the Didymos – Dimorphos binary system up to the final image before impact here: https://www.nasa.gov/feature/dart-s-final-images-prior-to-impact
The Hubble Space Telescope was used to capture images of the impact. The NASA/ESA Hubble Space Telescope team reported:
“The Hubble movie starts at 1.3 hours before impact. The first post-impact snapshot is 20 minutes after the event. Debris flies away from the asteroid in straight lines, moving faster than four miles per hour (fast enough to escape the asteroid’s gravitational pull, so it does not fall back onto the asteroid). The ejecta forms a largely hollow cone with long, stringy filaments.
At about 17 hours after the impact the debris pattern entered a second stage. The dynamic interaction within the binary system started to distort the cone shape of the ejecta pattern. The most prominent structures are rotating, pinwheel-shaped features. The pinwheel is tied to the gravitational pull of the companion asteroid, Didymos.
Hubble next captures the debris being swept back into a comet-like tail by the pressure of sunlight on the tiny dust particles. This stretches out into a debris train where the lightest particles travel the fastest and farthest from the asteroid. The mystery is compounded later when Hubble records the tail splitting in two for a few days.”
The results are in, and on 1 March 2023, the NASA / JHAPL team reported a much greater change to Dimorphos’ orbit than originally expected.
“…the investigation team, led by Cristina Thomas of Northern Arizona University, arrived at two consistent measurements of the period change from the kinetic impact: 33 minutes, plus or minus one minute. This large change indicates the recoil from material excavated from the asteroid and ejected into space by the impact (known as ejecta) contributed significant momentum change to the asteroid, beyond that of the DART spacecraft itself.”
After the success of the DART mission, maybe the U.S. Planetary Defense Officer will have fewer sleepless nights, but this is only the first small, but successful step toward an operational planetary defense system.
28 June 2023 update: Hubble sees bolder swarm surrounding Dimorphos
In June 2023, NASA reported that the Hubble Space Telescope had observed a swarm of 37 boulders that appears to have been knocked loose from Dimorphos upon impact.
An image of the impacted asteroid, Dimorphos, with drawn-in circles around the areas where boulders have been detected. Note that the relationship between north and east on the sky (as seen from below) is flipped relative to direction arrows on a map of the ground (as seen from above). Source: NASA, ESA, David Jewitt (UCLA); Alyssa Pagan (STScI)
NASA reported:
“The 37 free-flung boulders range in size from three feet to 22 feet across, based on Hubble photometry. They are drifting away from the asteroid at little more than a half-mile per hour – roughly the walking speed of a giant tortoise. The total mass in these detected boulders is about 0.1% the mass of Dimorphos…… The boulders are most likely not shattered pieces of the diminutive asteroid caused by the impact. They were already scattered across the asteroid’s surface, as evident in the last close-up picture taken by the DART spacecraft just two seconds before collision, when it was only seven miles above the surface.”
The loose composition of the surface of Dimorphos can be seen in this last complete image just prior to DART impact. Source: NASA, APL
To date, only Russia, the U.S. and China have accomplished soft landings on the Moon, with each nation using a launch vehicle and spacecraft developed within their own national space programs.
On 8 October 2020, Sheikh Mohammed bin Rashid announced the formation of the UAE’s lunar rover program, which intends to accomplish the first moon landing for the Arab world using the commercial services of a U.S. SpaceX Falcon 9 launch vehicle and a Japanese ispace lunar landing vehicle named HAKUTO-R. Once on the lunar surface, the UAE’s Rashid rover will be deployed to perform a variety of science and exploration tasks. This mission was launched from Cape Canaveral on 11 December 2022.
2. Japan’s ispace HAKUTO-R lunar lander
The Japanese firm ispace, inc. was founded in September 2010, with headquarters in Tokyo, a U.S. office in Denver, CO, and a European office in Luxembourg. Their website is here: https://ispace-inc.com
ispace’s HAKUTO team was one of six finalist teams competing for the Google Lunar XPRIZE. On 15 December 2017, XPRIZE reported,” Congratulations to Google Lunar XPRIZE Team HAKUTO for raising $90.2 million in Series A funding toward the development of a lunar lander and future lunar missions! This is the biggest investment to date for an XPRIZE team, and sends a strong signal that commercial lunar exploration is on the trajectory to success. One of the main goals of the Google Lunar XPRIZE is to revolutionize lunar exploration by spurring innovation in the private space sector, and this announcement demonstrates that there is strong market interest in innovative robotic solutions for sustainable exploration and development of the Moon. The XPRIZE Foundation looks forward to following Team HAKUTO as they progress toward their lunar mission!”
The Google Lunar XPRIZE was cancelled when it became clear that none of the finalist teams could meet the schedule for a lunar landing in 2018 and other constraints set for the competition. Consequently, Team HAKUTO’s lander was not flown on a mission to the Moon.
In April 2021, the Mohammed Bin Rashid Space Center (MBRSC) of the United Arab Emirates (UAE) signed a contract with ispace, under which ispace agreed to provide commercial payload delivery services for the Emirates Lunar Mission. After final testing in Germany, the ispace SERIES-1 (S1) lunar lander was ready in 2022 for the company’s ‘Mission 1,’ as part of its commercial lunar landing services program known as ‘HAKUTO-R’.
After its launch on 11 December 2022, the lunar spacecraft has been flying a “low energy” trajectory to the Moon in order to minimize fuel use during the transit and, hence, maximizes the available mission payload. It will take nearly five months for the combined lander / rover spacecraft to reach the Moon in April 2023.
The primary landing site is the Atlas crater in Lacus Somniorum (Lake of Dreams), which is a basaltic plain formed by flows of basaltic lava, located in the northeastern quadrant of the moon’s near side.
If successful, HAKUTO-R will also become the first commercial spacecraft ever to make a controlled landing on the moon.
After landing, the UAE’s Rashid rover will be deployed from the HAKUTO-R lander. In addition, the lander will deploy an orange-sized sphere from the Japanese Space Agency that will transform into a small wheeled robot that will move about on the lunar surface.
3. UAE’s Rashid lunar rover
The Emirates Lunar Mission (ELM) team at the Mohammed bin Rashid Space Centre (MBRSC) is responsible for designing, manufacturing and developing the rover, which is named Rashid after Dubai’s royal family. The ELM website is here: https://www.mbrsc.ae/service/emirates-lunar-mission/
The Rashid rover weighs just 22 pounds (10 kilograms) and, with four-wheel drive, can traverse a smooth surface at a maximum speed of 10 cm/sec (0.36 kph) and climb over an obstacle up to 10 cm (3.9 inches) tall and descend a 20-degree slope.
The Rashid rover is designed to operate on the Moon’s surface for one full lunar day (29.5 Earth days), during which time it will conduct studies of the lunar soil in a previously unexplored area. In addition, the rover will conduct engineering studies of mobility on the lunar surface and susceptibility of different materials to adhesion of lunar particles. The outer rims of this rover’s four wheels incorporate small sample panels to test how different materials cope with the abrasive lunar surface, including four samples contributed by the European Space Agency (ESA).
The diminutive rover carries the following scientific instruments:
Two high-resolution optical cameras (Cam-1 & Cam-2) are expected to take more than 1,000 still images of the Moon’s surface to assess the how lunar dust and rocks are distributed on the surface.
A “microscope” camera
A thermal imaging camera (Cam-T) will provide data for determining the thermal properties of lunar surface material.
Langmuir probes will analyze electric charge and electric fields at the lunar surface.
An inertial measurement unit to track the motion of the rover.
Mobility and communications tests of the completed rover were conducted in March 2022 in the Dubai desert.
The Ottawa, Ontario company Mission Control Space Services has provided a deep-learning artificial intelligence (AI) system named MoonNet that will be used for identifying geologic features seen by the rover’s cameras. Mission Control Services reports, “Rashid will capture images of geological features on the lunar terrain and transmit them to the lander and into MoonNet. The output of MoonNet will be transmitted back to Earth and then distributed to science team members….Learning how effectively MoonNet can identify geological features, inform operators of potential hazards and support path planning activities will be key to validating the benefits of AI to support future robotic missions.”
4. Landing attempt failed
The Hakuto-R lander crashed into the Moon on 25 April 2023 during its landing attempt.
In May 2023, the results of an ispace analysis of the landing failure were reported by Space.com:
“The private Japanese moon lander Hakuto-R crashed in late April during its milestone landing attempt because its onboard altitude sensor got confused by the rim of a lunar crater. the unexpected terrain feature led the lander’s onboard computer to decide that its altitude measurement was wrong and rely instead on a calculation based on its expected altitude at that point in the mission. As a result, the computer was convinced the probe was lower than it actually was, which led to the crash on April 25.”
“While the lander estimated its own altitude to be zero, or on the lunar surface, it was later determined to be at an altitude of approximately 5 kms [3.1 miles] above the lunar surface,” ispace said in a statement released on Friday (May 26). “After reaching the scheduled landing time, the lander continued to descend at a low speed until the propulsion system ran out of fuel. At that time, the controlled descent of the lander ceased, and it is believed to have free-fallen to the moon’s surface.”
On 23 May 2023, NASA reported that the its Lunar Reconnaissance Orbiter spacecraft had located the crash site of the UAE’s lunar spacecraft. The before and after views are shown in the following images.
Hakuto-R crash site, before (left) and after (right) the crash.Source: NASA/GSFC/Arizona State University
5. The future
ispace future lunar plans
ispace reported, “ispace’s SERIES-2 (S2) lander is designed, manufactured, and will be launched from the United States. While the S2 lander leverages lessons learned from the company’s SERIES-1 (S1) lander, it is an evolved platform representing our next generation lander series with increased payload capacity, enhanced capabilities and featuring a modular design to accommodate orbital, stationary or rover payloads.”
Ispace was selected through the Commercial Lunar Payload Services (CLPS) initiative to deliver NASA payloads to the far side of the Moon using the SERIES-2 (S2) lander, starting in 2025.
UAE future lunar plans
In October 2022, the UAE announced that it was collaborating with China on a second lunar rover mission, which would be part of China’s planned 2026 Chang’e 7 lunar mission that will be targeted to land near the Moon’s south pole. These plans may be cancelled after the U.S. applied export restrictions in March 2023 on the Rashid 2 rover, which contains some US-built components. The U.S. cited its 1976 International Traffic in Arms Regulations (ITAR), which prohibit even the most common US-built items from being launched aboard Chinese rockets.
“ispace Lunar Lander Selected to Deliver NASA CLPS Payloads to the Far Side of the Moon,” ispace press release, 25 July 2022: https://ispace-inc.com/news-en/?p=2436
“UAE Space Mission: Rashid Rover is due to land on the moon around April 2023 | Latest News | WION,” posted by WION, 17 December 2022: https://www.youtube.com/watch?v=olWgwrlb7mk
In 2016 the Defense Science Board (DSB) identified energy as a critical enabler of future military operations. The DoD’s Strategic Capabilities Office (SCO) launched Project Pele with the objective to design, build, and demonstrate a prototype mobile nuclear reactor to provide reliable and resilient electric power, while minimizing risk of nuclear proliferation, environmental damage, or harm to nearby personnel or populations.
The Pele reactor will be the first electricity-generating Generation IV nuclear reactor built in the United States. Check out the DoD Office of the Under Secretary of Defense, Research and Engineering (OUSD(R&E)) website for the Project Pele Environmental Impact Statement (EIS) here: https://www.cto.mil/pele_eis/
The Pele reactor will use High-Assay, Low-Enriched Uranium (HALEU, <20% enriched) fuel in the form of TRstructural ISOtropic (TRISO) coated fuel pellets (each about the size of a poppy seed).
The reactor will be assembled and initially operated at the Idaho National Laboratory (INL), under the safety oversight of the Department of Energy (DOE). The Pele reactor is expected to be transportable by rail, truck or cargo aircraft.
There’s a good status update on Project Pele in a February 2023 article on the Energy Intelligence website, “Interview: Pentagon’s Jeff Waksman on Project Pele Microreactor,” at the following link: https://www.energyintel.com/00000186-7b02-d1cb-a3ee-ffbf32940000
I recently saw the following spectacular photos of Kelvin-Helmholtz clouds that had occurred a few days earlier in Wyoming. The website EarthSky, which posted the first photo, reported, “Kelvin-Helmholtz clouds are named for Lord Kelvin and Hermann von Helmholtz, who studied the physics of the instability that leads to this type of cloud formation.”
The Hydrometeorology Group website (https://hydrometeology-group1.weebly.com/kelvinndashhelmholtz-instability.html) reports, “Kelvin-Helmholtz clouds are the product of a strong wind shear. Wind shear refers to the rate of change of wind speed, or wind direction, over a set distance. The formation of Kelvin-Helmholtz clouds requires the presence of two vertical air layers of different densities that travel at different speeds. The upper layer must be the warmer and less dense of the two. Given a great enough wind shear, eddies will develop where the two air layers meet.”This type of process is illustrated in the following diagram.
You’ll find more photos and details on Kelvin-Helmholtz clouds in the following March 2022 EarthSky article, which notes that Kelvin-Helmholtz formations also can be observed at the interfaces of some cloud bands encircling Jupiter and Saturn: https://earthsky.org/earth/kelvin-helmholtz-clouds/
Could Kelvin-Helm clouds have been the inspiration for Vincent Van Gogh’s post-impressionistic masterpiece, The Starry Night, which he painted while recovering in an asylum in Saint Rémy (Provence) France in June 1889?
In April 2021, I posted a short article entitled, “Multi-messenger Astronomy Provides Extraordinary Views of Uranus,” which included two composite views of Uranus, created by combining near-infrared images taken by the Keck-1 telescope at an elevation of 4,145 meters (13,599 ft) on Maunakea, Hawaii, with X-ray images taken with the Advanced CCD Imaging Spectrometer (ACIS) aboard the orbiting Chandra X-Ray Observatory.
The Webb images of Neptune, taken on July 12, 2022, are reproduced below.
The Space Telescope Science Institute (STScI) has created a Resource Gallery of Webb Space Telescope images, which you can browse here: https://webbtelescope.org/resource-gallery/images. Currently there are 280 images in the Webb Resource Gallery. I think this is a website worth revisiting from time to time.
NASA’s Solar System Exploration website provides views of Neptune from several earlier sources, including the 1989 Voyager 2 deep space probe, the Hubble Space Telescope and the European Southern Observatory’s (ESO) Very Large Telescope (VLT). Check it out here: https://solarsystem.nasa.gov/planets/neptune/galleries/
2018: The following image was taken in July 2018 during the testing of the narrow-field, adaptive optics mode of the optical/infrared MUSE/GALACSI instrument on ESO’s VLT, which is located at an elevation of 2,635 m (8,645 ft) at Cerro Paranal, in the Atacama Desert of northern Chile.
1994: The more recent Webb Space Telescope and VLT images are much better than the Hubble Space Telescope optical-range images of Neptune taken more than two decades earlier, in 1994.
1989: In October 1989, the following whole planet view of Neptune was produced using images taken through the green and orange filters on the narrow angle camera during the Voyager 2 spacecraft flyby of the planet.
In the future, we can hopefully look forward to more detailed multi-messenger images of Neptune, combining the near-infrared images from Webb with images from other observatories that can view the planet in different spectral bands.