All posts by Drummer

Rise of the Babel Fish

Peter Lobner

In Douglas Adams’ 1978 BBC radio series and 1979 novel, “The Hitchhiker’s Guide to the Galaxy,” we were introduced to the small, yellow, leach-like Babel fish, which feeds on brain wave energy.

Babel fishSource: http://imgur.com/CZgjO

Adams stated that, “The practical upshot of all this is that if you stick a Babel fish in your ear you can instantly understand anything in any form of language.”

In Gene Roddenberry’s original Star Trek series, a less compact, but, thankfully, inorganic, universal translator served Captain Kirk and the Enterprise crew well in their many encounters with alien life forms in the mid 2260s. You can see a hand-held version (looking a bit like a light saber) in the following photo from the 1967 episode, “Metamorphosis.”

Universal translatorSource: http://visiblesuns.blogspot.com/2014/01/star-trek-metamorphosis.html

A miniaturized universal translator built into each crewmember’s personal communicator soon replaced this version of the universal translator.

At the rate that machine translation technology is advancing here on Earth, its clear that we won’t have to wait very long for our own consumer-grade, portable, “semi-universal” translator that can deliver real-time audio translations of conversations in different languages.

Following is a brief overview of current machine translation tools:

BabelFish

If you just want a free on-line machine translation service, check out my old favorite, BabelFish, originally from SYSTRAN (1999), then Alta Vista (2003), then Yahoo (2003 – 2008), and today at the following link:

https://www.babelfish.com

With this tool, you can do the following:

  • Translate any language into any one of 75 supported languages
  • Translate entire web pages and blogs
  • Translate full document formats such as Word, PDF and text

When I first was using BabelFish more than a decade ago, I often was surprised by the results of a reverse translation of the text I had just translated into Russian or French.

While BabelFish doesn’t support real-time, bilingual voice translations, it was an important, early machine translation engine that has evolved into a more capable, modern translation tool.

Google Translate

This is a machine translation service / application that you can access at the following link:

https://translate.google.com

Google Translate also is available as an IPhone or Android app and currently can translate text back and forth between any two of 92 languages.

Google Translate has several other very useful modes of operation, including, translating text appearing in an image, translating speech, and translating bilingual conversations.

  • Translate image: You can translate text in images—either in a picture you’ve taken or imported, or just by pointing your camera.
  • Translate speech: You can translate words or phrases by speaking. In some languages, you’ll also hear your translation spoken back to you.
  • Translate bilingual conversation: You can use the app to talk with someone in a different language. You can designate the language or the Translate app will recognize which language is being spoken, thereby allowing you have a (more-or-less) natural conversation.

In a May 2014 paper by Haiying Li, Arthur C. Graesser and Zhiqiang Cai, entitled, “Comparison of Google Translation with Human Translation,” the authors investigated the accuracy of Google Chinese-to-English translations from the perspectives of formality and cohesion. The authors offered the following findings:

“…..it is possible to make a conclusion that Google translation is close to human translation at the semantic and pragmatic levels. However, at the syntactic level or the grammatical level, it needs improving. In other words, Google translation yields a decipherable and readable translation even if grammatical errors occur. Google translation provides a means for people who need a quick translation to acquire information. Thus, computers provide a fairly good performance at translating individual words and phrases, as well as more global cohesion, but not at translating complex sentences. “

You can read the complete paper at the following link:

https://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS14/paper/viewFile/7864/7823

A December 2014 article by Sumant Patil and Patrick Davies, entitled, “Use of Google Translate in Medical Communication: Evaluation of Accuracy,” also pointed to current limitations in using machine translations. The authors examined the accuracy of translating 10 common medical phrases into 26 languages (8 Western European, 5 Eastern European, 11 Asian, and 2 African) and reported the following:

“Google Translate has only 57.7% accuracy when used for medical phrase translations and should not be trusted for important medical communications. However, it still remains the most easily available and free initial mode of communication between a doctor and patient when language is a barrier. Although caution is needed when life saving or legal communications are necessary, it can be a useful adjunct to human translation services when these are not available.”

The authors noted that translation accuracy depended on the language, with Swahili scoring lowest with only 10% correct, and Portuguese scoring highest at 90%.

You can read this article at the following link:

http://www.bmj.com/content/349/bmj.g7392

ImTranslator

ImTranslator, by Smart Link Corporation, is another machine translation service / tool, which you can find at the following link:

http://imtranslator.net

ImTranslator uses several machine translation engines, including Google Translate, Microsoft Translator, and Babylon Translator. One mode of ImTranslator operation is called, “Translate and Speak”, which delivers the following functionality:

“….translates texts from 52 languages into 10 voice-supported languages. This … tool is smart enough to detect the language of the text submitted for translation, translate into voice, modify the speed of the voice, and even create an audio link to send a voiced message.”

I’ve done a few basic tests with Translate and Speak and found that it works well with simple sentences.

In conclusion

Machine translation has advanced tremendously over the past decade and improved translation engines are the key for making a universal translator a reality. Coupled with cloud-based resources and powerful smart phone apps, Google Translate is able to deliver an “initial operating capability” (IOC) for a consumer-grade, real-time, bilingual voice translator.

This technology is out of the lab, rapidly improving based on broad experience from performing billions of translations, and seeking commercial applications. Surely in the next decade, we’ll be listening through our ear buds and understanding spoken foreign languages with good accuracy in multi-lingual environments. Making this capability “universal” (at least on Earth) will be a challenge for the developers, but a decade is a long time in this type of technology business.

There may be a downside to the widespread use of real-time universal translation devices. In “The Hitchhiker’s Guide to the Galaxy,” Douglas Adams noted:

“…..the poor Babel fish, by effectively removing all barriers to communication between different races and cultures, has caused more and bloodier wars than anything else in the history of creation.”

Perhaps foreseeing this possibility, Google Translate includes an “offensive word filter” that doesn’t allow you to translate offensive words by speaking. As you might guess, the app has a menu setting that allows the user to turn off the offensive word filter. Trusting that people always will think before speaking into their unfiltered universal translators may be wishful thinking.

19 May 2016 Update:

Thanks to Teresa Marshall  for bringing to my attention the in-ear, real-time translation device named Pilot, which was developed by the U.S. firm Waverly Labs. For all appearances, Pilot is almost an electronic incarnation of the organic Babel Fish. The initial version of Pilot uses two Bluetooth earbuds (one for you, and one for the person you’re talking to in a different language) and an app that runs locally on your smartphone without requiring web access. The app mediates the conversation in real-time (with a slight processing delay), enabling each user to hear the conversation in their chosen language.

real-time-translator-ear-waverly-labs-3Photo credit: Waverly Labs

As you might guess, the initial version of Pilot will work with the popular Romance languages (i.e., French, Spanish, etc.), with a broader language handling capability coming in later releases.

Check out the short video from Waverly Labs at the following link:

https://www.youtube.com/watch?v=VO-naxKNuzQ

I can imagine that Waverly Labs will develop the capability for the Pilot app to listen to a nearby conversation and provide a translation to one or more users on paired Bluetooth earbuds. This would be a useful tool for international travelers (i.e., on a museum tour in a foreign language) and spies.

You can find more information on Waverly Labs at the following link:

http://www.waverlylabs.com

Developing the more advanced technology to provide real-time translations in a noisy crowd with multiple, overlapping speakers will take more time, but at the rate that real-time translation technology is developing, we may be surprised by how quickly advanced translation products enter the market.

Where in the Periodic Table Will We Put Element 119?

Peter Lobner

The first periodic table of elements

In 1869, Russian chemist Dimitri Mendeleev proposed the first modern periodic table of elements, in which he arranged the 60 known elements in order of their increasing atomic masses (average mass, considering relative abundance of isotopes in naturally-occurring elements), with elements organized into groups based their similar properties. Mendeleev observed that certain properties recur at regular intervals in the periodic table, thereby defining the groupings of elements.

Mendeleev stamp Source: http://we-are-star-stuff.tumblr.com

This first version of the periodic table is compared to the modern periodic table in the following diagram prepared by SIPSAWIYA.COM. Mendeleev’s periodic table consisted of Groups I to VIII in the modern periodic table.

Mendeleev_sipsawiyagif

The gaps represent undiscovered elements predicted by Mendeleev’s periodic table, for example, Gallium (atomic mass 69.7) and Germanium (atomic mass 72.6) . You can read more about Mendeleev’s periodic table at the following link:

http://www.sipsawiya.com/2015/07/history-of-periodic-table.html

German chemist Lothar Meyer was competing with Mendeleev to publish the first periodic table. The general consensus is that Mendeleev, not Meyer, was the true inventor of the periodic table because of the accuracy and detail of Mendeleev’s work.

Element mendelevium (101) was named in honor of Dimitri Mendeleev.

Evolution of the Modern Periodic Table of Elements

The modern periodic table organizes elements according to their atomic numbers (number of protons in the nucleus) into 7 periods (vertical) and 18 groups (horizontal). The version shown below, in the International Union of Pure and Applied Chemistry (IUPAC) format, accounts for elements up to atomic number 118 and color-codes 10 different chemical series.

PeriodicTableMeltingPoint

Source: http://sciencenotes.org/printable-periodic-table/

Hundreds of versions of the periodic table of elements have existed since Mendeleev’s first version. You can view a great many of these at The Internet Database of Periodic Tables curated by Dr. Mark R. Leach and presented at the following link:

http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?Button=All

Glenn T. Seaborg (1912 – 1999) is well known for his role in defining the structure of the modern periodic table. His key contributions to periodic table structure include:

  • In 1944, Seaborg formulated the ‘actinide concept’ of heavy element electron structure, which predicted that the actinides, including the first 11 transuranium elements, would form a transition series analogous to the rare earth series of lanthanide elements. The actinide concept showed how the transuranium elements fit into the periodic table.
  • Between 1944 and 1958, Seaborg identified eight transuranium elements: americium (95), curium (96), berkelium (97), californium (98), einsteinium (99), fermium (100), mendelevium (101), and nobelium (102).

Element seaborgium (106) was named in honor of Glenn T. Seaborg.  Check out details Glenn T. Seaborg’s work on transuranium elements at the following link:

http://www.osti.gov/accomplishments/seaborg.html

Four newly-discovered and verified elements

On 30 December 2015, IUPAC announced the verification of the discoveries of the following four new elements: 113, 115, 117 and 118.

  • Credit for the discovery of element 113  was given to a team of scientists from the Riken institute in Japan.
  • Credit for discovery of elements 115 , 117 and 118 was given to a Russian-American team of scientists at the Joint Institute for Nuclear Research in Dubna and Lawrence Livermore National Laboratory in California.

These four elements complete the 7th period of the periodic table of elements. The current table is now full.

You can read this IUPAC announcement at the following link:

http://www.iupac.org/news/news-detail/article/discovery-and-assignment-of-elements-with-atomic-numbers-113-115-117-and-118.html

On 28 November 2016, the IUPAC approved the names and symbols for these four new elements: nihonium (Nh), moscovium (Mc), tennessine (Ts), and oganesson (Og), respectively for element 113, 115, 117, and 118.  Nihonium was the first element named in Asia.

Dealing with super-heavy elements beyond element 118

The number of physically possible elements is unknown.

In 1969, Glenn T. Seaborg proposed the following extended periodic table to account for undiscovered elements from atomic number 110 to 173, including the  “super-actinide” series of elements (atomic numbers 121 to 155).

Glenn Seaborg 1969 extended periodic table copy R1Source: W. Nebergal, et al., General Chemistry, 4th ed., pp 668 – 670, D.C. heath Co, Massachusetts, 1972

In 2010, Finnish chemist Pekka Pyykkö at the University of Helsinki proposed an extended periodic table with 54 predicted elements. The extension, shown below, is based on a computational model that predicts the order in which the electron orbital shells will fill up, and, therefore, the periodic table positions of elements up to atomic number 172. Pekka Pyykkö says that the value of the work is in showing, “how the rules of quantum mechanics and relativity function in determining chemical properties.”

Pyyko 2010 periodic tableSource: Royal Society of Chemistry

You can read more on Pekka Pyykkö’s extended periodic table at the following link:

http://www.rsc.org/Publishing/ChemScience/Volume/2010/11/Extended_elements.asp

You can read more general information on the extended periodic table on Wikipedia at the following link:

https://en.wikipedia.org/wiki/Extended_periodic_table

So where will we place element 119 in the periodic table of elements?

Based on both the Seaborg and Pyykkö extended periodic tables described above, element 119 will be the start of period 8 and it will be an alkali metal. Element 120 will be an alkaline earth. With element 121, we’ll enter the new chemical series of the “super-actinides”.

These are exciting times for scientists attempting to discover new super-heavy elements.

Where does neutronium fit in the periodic table?

Neutronium is a name coined in 1926 by scientist Andreas von Antropoff for a proposed “element of atomic number zero” (i.e., because it has no protons) that he placed at the head of the periodic table. In modern usage, the extremely dense core of a neutron star is referred to as “degenerate neutronium”.

Neutronium also finds many hypothetical applications in modern science fiction. For example, in the 1967 Star Trek episode, The Doomsday Machine, neutronium formed the hull of a giant, autonomous “planet killer”, and was portrayed as being invulnerable to all manner of scans and weapons. Since free neutrons at standard temperature and pressure undergo β decay with a half-life of 10 minutes, 11 seconds, a very small quantity of neutronium could be quite hazardous to your health.

14 January 2019 Update:  2019 marks the 150th anniversary of Dimitri Mendeleev’s periodic table

You’ll find a very good article, “150 years on, the periodic table has more stories than it has elements,” by Elizabeth Quill on the Science News website.  Here’s the link:

https://www.sciencenews.org/article/periodic-table-elements-chemistry-fun-facts-history

18 January 2019 Update:  Possibly the oldest copy of Mendeleev’s periodic table was found at the University of St. Andrews in Scotland

On 17 January 2019, the University of St. Andrews posted a news article stating that a periodic table of the elements dating from 1885 recently was found at the university and is thought to be the oldest in the world.

The 1885 periodic table.  Source: University of St. Andrews

You can read the University of St. Andrews news posting here:

https://news.st-andrews.ac.uk/archive/worlds-oldest-periodic-table-chart-found-in-st-andrews/

Another Record-setting Year for Global Temperature

Peter Lobner

The National Aeronautics and Space Administration’s (NASA) Goddard Institute for Space Studies (GISS) released the results of an analysis by NASA and National Oceanic and Atmospheric Administration (NOAA) that showed that globally-averaged temperature in 2015 was the highest since modern record keeping began in 1880. You can read the NOAA / NASA press release at the following link:

http://www.giss.nasa.gov/research/news/20160120/

You can download a copy of the more detailed NOAA / NASA briefing at the following link:

http://www.giss.nasa.gov/research/news/20160120/noaa_nasa_global_analysis_2015.pdf

The analysis shows that globally-averaged temperature in 2015 exceeded the previous mark set in 2014 by 0.23 degrees Fahrenheit (0.13 degrees Celsius) and continued a warming trend, as shown in the following graph.

gistemp_graph_2015Source: NASA Goddard

In this graph, the zero on the y-axis is the average temperature for a 30-year period from 1951 to 1980. The trend lines show results for El Niño years (orange), La Niña years (blue), and all years (dashed line). The 2015 globally-averaged temperature was:

  • 57° F (0.87° C) above the 1951 to 1980 30-year (baseline) average, and
  • 62° F (0.90° C) above the 1901 to 2000 100-year (20th century) average

The distribution of global temperatures relative to the 1951 – 80 baseline is shown in the following charts.

NOAA:NASA briefing_1_Jan2016

NOAA:NASA briefing_2_Jan2016Source, both graphics: NOAA / NASA Annual Global Analysis for 2015

The NOAA / NASA press release cited above includes an animation that helps visualize Earth’s long-term warming trend based on data from 1880 to 2015. NOAA / NASA note that phenomena such as El Niño or La Niña, which warm or cool the tropical Pacific Ocean, can contribute to short-term variations in global average temperature. A warming El Niño was in effect for most of 2015

The full 2015 surface temperature data set and the complete methodology used by NOAA / NASA in their analysis are available to the public on the GISS Surface Temperature Analysis (GISTEMP) webpage at the following link:

http://data.giss.nasa.gov/gistemp/

The availability of the data and the analytical methodology allows the NOAA / NASA results to be subject to independent scrutiny. I commend NOAA and NASA for their openness in this matter, which will aid in reaching scientific consensus on the NOAA / NASA results.

This behavior by NOAA / NASA is a stark contrast to the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC), which has failed to provide full public access to their underlying data and analytical methodologies and has been criticized for failing to rigorously apply the scientific method in their work. To help understand why the IPCC claim of “scientific consensus” is without merit, the Nongovernmental International Panel on Climate Change (NIPCC) published the book, “Why Scientists Disagree About Global Warming,” on 30 November 2015. You can download this document for free at the following link:

https://www.heartland.org/policy-documents/why-scientists-disagree-about-global-warming

To help put this in perspective, I thank cartoonist Wiley Miller for the following timely and insightful cartoon published on 20 January 2016. I challenge you to apply this cartoon to your understanding of the climate change debate.

Cartoon Science_Jan2016Source: San Diego Union Tribune

Relax, the Planetary Defense Officer has the Watch

Peter Lobner

On 7 January 2016, NASA formalized its ongoing program for detecting and tracking Near-Earth Objects (NEOs) by establishing the Planetary Defense Coordination Office (PDCO). You can read the NASA announcement at the following link:

https://www.nasa.gov/feature/nasa-office-to-coordinate-asteroid-detection-hazard-mitigation

PDCO is responsible for supervision of all NASA-funded projects to find and characterize asteroids and comets that pass near Earth’s orbit around the sun. PDCO also will take a leading role in coordinating interagency and intergovernmental efforts in response to any potential impact threats. Specific assigned responsibilities are:

  • Ensuring the early detection of potentially hazardous objects (PHOs), which are defined as asteroids and comets whose orbits are predicted to bring them within 0.05 Astronomical Units (AUs) of Earth (7.48 million km, 4.65 million miles); and of a size large enough to reach Earth’s surface – that is, greater than 30 to 50 meters (98.4 to 164.0 feet);
  • Tracking and characterizing PHOs and issuing warnings about potential impacts;
  • Providing timely and accurate communications about PHOs; and
  • Performing as a lead coordination node in U.S. Government planning for response to an actual impact threat.

As you can see in the following organization chart, PDCO is part of NASA’s Planetary Science Division, in the agency’s Science Mission Directorate in Washington D.C.  PDCO is led by Lindley Johnson, longtime NEO program executive, who now has the very impressive title of “Planetary Defense Officer”.

Planetary Defense Coordination OfficeSource: NASA PDCO

You can find out more at the PDCO website at the following link:

https://www.nasa.gov/planetarydefense

The PDCO includes the Near Earth Object (NEO) Observation Program, which was established in 1998 in response to a request from the House Committee on Science that NASA find at least 90% of 1 km (0.62 mile) and larger NEOs. That goal was achieved by end of 2010.

The NASA Authorization Act of 2005 increased the scope of NEO objectives by amending the National Aeronautics and Space Act of 1958 (“NASA Charter”) by adding the following new functional requirement:

 ‘‘The Congress declares that the general welfare and security of the United States require that the unique competence of the National Aeronautics and Space Administration be directed to detecting, tracking, cataloging, and characterizing near-Earth asteroids and comets in order to provide warning and mitigation of the potential hazard of such near-Earth objects to the Earth.’’

 This was further clarified by stating that NASA will:

“…plan, develop, and implement a Near-Earth Object Survey program to detect, track, catalogue, and characterize the physical characteristics of near-Earth objects equal to or greater than 140 meters (459 feet) in diameter in order to assess the threat of such near-Earth objects to the Earth. It shall be the goal of the Survey program to achieve 90 percent completion of its near-Earth object catalog within fifteen years (by 2020)”

The contractors supporting the NASA NEO Observation Program are Jet propulsion Laboratory (JPL), Massachusetts Institute of Technology (MIT) / Lincoln laboratory, Smithsonian Astrophysical Observatory, University Space Research Association, University of Arizona, and University of Hawaii / Institute of Astronomy.

Once detected, NEO orbits are precisely predicted and monitored by the Center for NEO Studies (CNEOS) at JPL. Their website is at the following link:

http://neo.jpl.nasa.gov/neo/

The catalog of known NEOs as of 3 November 2015 included 13,206 objects. NASA reports that new NEOs are being identified at a rate of about 1,500 per year. Roughly half of the known NEOs – about 6,800 – are objects larger than 140 meters (459 feet) in diameter. The estimated population of NEOs of this size is about 25,000. Current surveys are finding NEOs of this size at a rate of about 500 per year.  Recent encounters with NEOs include:

  • Asteroid 2015 TB145, the “Halloween Pumpkin”
    • Roughly spherical, about 610 meters (2,000 feet) in diameter
    • Detected 10 October 2015, approaching from the outer solar system, 21 days before closest approach
    • Closest approach occurred on 31 October 2015 at a distance of 310,000 miles (1.3 times the distance to the Moon) at a speed of about 78,000 miles an hour.
  • Asteroid airburst near Chelyabinsk, Russia
    • Airburst occurred 15 February 2013
    • Object estimated to be about 19 meters in diameter
    • Approached from the inner solar system; not detected before airburst
    • Peter Brown at the University of Western Ontario, estimated the energy of the Chelyabinsk airbust at 400 to 600 kilotons of TNT.  You can read this analysis in at the following link:

http://www.nature.com/articles/nature12741.epdf?referrer_access_token=OvLha95ujqCh0k4maNPuFNRgN0jAjWel9jnR3ZoTv0PyqszVJsMboh07BaZDfmONEget5lbJtDTXTwE2VvrDWIEgk5iXkd1EFvngsntJFeC1wOg4ASyku1lPPrkWlAPvoRMkxnjovQe0UYqFmFkZ6v9qqq9DL9_3CwYPmTWA6e-sweRQPIyrDHMUaAQYWA9H4TNSsZGN662UcGxlW5d1GA%3D%3D&tracking_referrer=www.theguardian.com

Another result of the NEO Observation Program is the following map of data gathered from 1994-2013 on small asteroids impacting Earth’s atmosphere and disintegrating to create very bright meteors, technically called “bolides” and commonly referred to as “fireballs”.  Sizes of orange dots (daytime impacts) and blue dots (nighttime impacts) are proportional to the optical radiated energy of impacts measured in billions of Joules (GJ) of energy, and show the location of impacts from objects about 1 meter (3 feet) to almost 20 meters (60 feet) in size.  You can see a rather uniform distribution of these fireballs over the surface of the Earth.

bolide_events_1994-2013 Source: NASA NEO Observation Program

In September 2014, the NASA Inspector General published the report, “NASA’s Efforts to Identify Near-Earth Objects and Mitigate Hazards,” which you can download for free at the following link:

https://oig.nasa.gov/audits/reports/FY14/IG-14-030.pdf

Key findings were the following:

  • Even though the Program has discovered, categorized, and plotted the orbits of more than 11,000 NEOs since 1998, NASA will fall short of meeting the 2005 Authorization Act goal of finding 90 percent of NEOs larger than 140 meters (459 feet) in diameter by 2020.
  • ….we believe the Program would be more efficient, effective, and transparent were it organized and managed in accordance with standard NASA research program requirements

You will find an NEO Program update, including a reference to the new Planetary Defense Coordination Office, presented by Lindley Johnson on 8 November 2915 at the following link:

http://www.minorplanetcenter.net/IAWN/2015_national_harbor/NEO_Program_update.pdf

So, what will we see in the years ahead as technology is explored and techniques are developed to defend Earth against a significant NEO impact? There have been many movies that have tried to answer that question, but none offered a particularly good answer.

Asteroid movies 2Asteroid movies 1 Source: Google

In 1968, Star Trek explored this issue in Season 3, Episode 3, “The Paradise Syndrome”. Ancient aliens had left a planetary defense device to protect a primitive civilization against their equivalent of NEOs. Only the intervention of Capt. James T. Kirk restored the device to operation in time to deflect an incoming asteroid and save the indigenous civilization.

Star Trek - The Paradise Syndrome 1 Source: memory-alpha.wiki.comStar Trek - The Paradise Syndrome 2 Source: technovelgy.com

Our new Planetary Defense Officer has a comparable responsibility on Earth, but without the benefits of special effects.

In 2010, National Academies Press published, “Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies.” This report explores civil defense mitigation action and three basic defense techniques:

  • Slow push-pull methods
  • Kinetic impact methods
  • Nuclear methods

If you have a MyNAP account, you can download this report for free at the following link:

http://www.nap.edu/catalog/12842/defending-planet-earth-near-earth-object-surveys-and-hazard-mitigation

NAP Defending Planet Earth Source: NAP

A Brief History of Fireworks

Peter Lobner

There is a good history of fireworks by Joe Carmichael posted on the INVERSE website at the following link:

https://www.inverse.com/article/9731-fireworks-a-brief-history-of-things-exploding-attractively

Here, you can scroll through an illustrated timeline (see screenshot, below) from the advent of bamboo firecrackers in 200 BCE to modern day fireworks.

Tiimeline of fireworks  Source: INVERSE

Of local interest, the timeline includes the July 4th 2012 San Diego Big Bay Boom (aka Big Bay Bust), when a technical malfunction caused all fireworks on multiple barges in the bay to be fired prematurely in a spectacular 30 second pyrotechnic display.

San Diego 2012 Big Bay Bust  Source: YouTube

In case you missed the actual event, you can see a (short) video at the following link:

http://www.nydailynews.com/news/national/san-diego-fireworks-big-bay-boom-ruined-video-article-1.1108259

My personal favorite is the Sydney, Australia New Year’s fireworks display, which begins with what looks like an explosive demolition of the Harbor Bridge and then continues with the spectacular main event seen in the photos below.

2016 New-Years-Eve-Sydney-Fireworks2016 sydney-fireworks-ceremonySource: http://www.inewyearsevequotes.com/happy-new-years-eve-sydney-fireworks-2016/

You can see a short video of the start of Sydney’s 2016 New Year’s fireworks at the following link:

http://www.theguardian.com/world/video/2015/dec/31/sydney-harbour-new-year-fireworks-2016-video

First Ever 3D Printed Object Made From Asteroid / Meteorite Metals

Peter Lobner

In a 31 December 2015 post, I discussed the “U.S. Commercial Space Launch Competitiveness Act,” which was signed into law on 25 November 2015 and established, among other things, the legal basis for asteroid mining. I also identified the firm Planetary Resources (http://www.planetaryresources.com/ – home-intro) as one of the firms having a business interest in asteroid prospecting.

Today, at the Consumer Electronics Show (CES) today in Las Vegas, Planetary Resources announced that they, in collaboration with their partner firm, 3D Systems (http://www.3dsystems.com), have produced the first ever direct metal print of an object using metals recovered from an asteroid (or meteorite) that impacted Earth.

PlanetaryResources_3DSystems_Meteorite2_LOW-680x355 Source: Planetary Resources

In the Planetary Resources announcement, they stated that the material used for 3D printing:

  • “…was sourced from the Campo Del Cielo impact near Argentina, and is composed of iron, nickel and cobalt – similar materials to refinery grade steel.”
  • “ …was pulverized, powdered and (then) processed on the new 3D Systems ProX DMP 320 metals 3D printer.”

You can read the announcement at the following link:

http://www.planetaryresources.com/2016/01/planetary-resources-and-3d-systems-reveal-first-ever-3d-printed-object-from-asteroid-metals/

You can read more about the ProX DMP 320 3D printer at the following link:

http://www.3dsystems.com/3d-printers/production/prox-dmp-320

The milestone announced today demonstrates a key capability needed for building research bases and commercial facilities in space using raw materials found on another body in our solar system.

Imagine what the cargo manifest will be on future space missions to destinations that have useful natural resources that can be mined and prepared on site for use in various 3D printing (additive manufacturing) activities. The early missions will need to carry pre-fabricated structures for an initial base, tools for initial mining and manufacturing work, other items manufactured on Earth, and consumables. Once the on-site mining and manufacturing facilities reach an initial operating capability, the extended supply chain from Earth can be reduced commensurate with the capabilities of the local supply chain.

For more background information on this subject, National Academies Press published the  report, “3D Printing in Space”, which you can download for free at the following link if you have set up a MyNAP account:

http://www.nap.edu/catalog/18871/3d-printing-in-space

18871-0309310083-450  Source:  NAP

Opportunities for 3D printing in space addressed in this NAP report include: manufacturing new or replacement parts needed on a space vehicle or off-Earth facility; creating structures that are difficult to produce on, or transport from, Earth; creating a fully-printed spacecraft; using resources available on planetary surfaces; recycling materials in space; and establishing a free-flying fabrication facility.  The report also includes roadmaps for NASA and the U.S. Air Force deployment of 3D printing capabilities in space.

This is just the start. Manufacturing in space using locally sourced materials will revolutionize our approach for building a permanent human presence off the planet Earth.

Just What are Those U.S. Scientists Doing in the Antarctic and the Southern Ocean?

Peter Lobner

The National Academies Press (NAP) recently published the report, “A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research”, which you can download for free at the following link if you have established a MyNAP account:

http://www.nap.edu/catalog/21741/a-strategic-vision-for-nsf-investments-in-antarctic-and-southern-ocean-research

Print Source: NAP

NSF states that research on the Southern Ocean and the Antarctic ice sheets is becoming increasingly urgent not only for understanding the future of the region but also its interconnections with and impacts on many other parts of the globe. The research priorities for the next decade, as recommended by the Committee on the Development of a Strategic Vision for the U.S. Antarctic Program; Polar Research Board; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine, are summarized below:

  • Core Program: Investigator-driven basic research across a broad range of disciplines
    • NSF gives the following rationale: “…it is impossible to predict where the next major breakthroughs or advances will happen. Thus to ensure that the nation is well positioned to take advantage of such breakthroughs, it is important to be engaged in all core areas of scientific research.”
      • NSF notes, “…discoveries are often made by single or small groups of PIs thinking outside the box, or with a crazy new idea, or even just making the first observations from a new place.”
    • Examples of basic research that have led to important findings include:
      • Ross Sea food chain is affected by a high abundance of predator species (whales, penguins and toothfish) all competing for the same limited resource: krill. Decline or recovery of one predator population can be seen in an inverse effect on the other predator populations.  This food chain response is not seen in other areas of the Antarctic ice shelf where predator populations are lower, allowing a larger krill population that adequately supports all predators.
      • Basic research into “curious” very-low frequency (VLF) radio emissions produced by lightning discharges led to a larger program (with a 21.2-km-long VLF antenna) and ultimately to a better understanding of the behavior of plasma in the magnetosphere.
  • Strategic, Large Research Initiatives –  selection criteria:
    • Primary filter: compelling science – research that has the potential for important, transformative steps forward in understanding and discovery
    • Subsequent filters: potential for societal impact; time-sensitive in nature; readiness / feasibility; and key area for U.S. and NSF leadership.
    • Additional factors: partnership potential; impact on program balance; potential to help bridge existing disciplinary divides
  • Strategic, Large Research Initiative – recommendations::
    • Priority I: The Changing Antarctic Ice Sheets Initiative to determine how fast and by how much will sea level rise?
      • A multidisciplinary initiative to understand why the Antarctic ice sheets is changing now and how they will change in the future.
      • Will use multiple records of past ice sheet change to understand rates and processes.
    • Priority II: How do Antarctic biota evolve and adapt to the changing environment?
      • Decoding the genomic (DNA) and transcriptomic (messenger RNA molecules) bases of biological adaptation and response across Antarctic organisms and ecosystems.
    • Priority III: How did the universe begin and what are the underlying physical laws that govern its evolution and ultimate fate?
      • A next-generation cosmic microwave background (CBM) program that builds on the current successful CMB program using telescopes at the South Pole and the high Atacama Plateau in Chile and possibly will add a new site in the Northern Hemisphere to allow observations of the full sky

You will find detailed descriptions of the Priority I to III strategic programs in the Strategic Vision report.

Heritage Foundation’s 2016 Index of U.S. Military Strength

Peter Lobner

Heritage Foundation recently released the subject report, which assesses the current ability of the U.S. military to provide for the common defense. Heritage Foundation notes: “This …. Index of U.S. Military Strength gauges the ability of the U.S. military to perform its missions in today’s world, and each sub­sequent edition will provide the basis for measuring the improvement or weakening of that ability.”

Heritage Foundation 2016 index cover  Source: Heritage Foundation

The report, edited by Dakota L. Wood, is organized as follows:

  • Introduction.
  • Executive Summary
  • The Role of a Strong National Defense
  • The Contemporary Spectrum of Conflict: Protracted, Gray Zone, Ambiguous, and Hybrid Modes of War
  • Preempting Further Russian Aggression Against Europe
  • Intelligence and National Defense
  • America’s Reserve and National Guard Components: Key Contributors to U.S. Military Strength
  • Assessing the Global Operating Environment
  • Assessing Threats to U.S. Vital Interests
  • An Assessment of U.S. Military Power
  • Glossary of Terms and Abbreviations
  • Methodology
  • Appendix: Military Capabilities and Corresponding Modernization Programs

The Heritage Foundation notes that the, “2016 Index of U.S. Mil­itary Strength concludes that America’s ‘hard power’ has deteriorated still further over the past year, pri­marily as a result of inadequate funding that has led to a shrinking force that possesses aging equipment and modest levels of readiness for combat.”

You can download the complete report, or just individual sections or chapters, at the following link:

http://index.heritage.org/military/2016/resources/download/

I hope you will read this report and draw your own conclusions.

Legal Basis Established for U.S. Commercial Space Launch Industry Self-regulation and Commercial Asteroid Mining

Peter Lobner

On 25 November 2015, the “U.S. Commercial Space Launch Competitiveness Act” was signed into law, and fundamentally changed the commercial U.S. space industry. The law consists of four parts:

  • Title I: “Spurring Private Aerospace Competitiveness and Entrepreneurship Act of 2015,” or, “SPACE Act of 2015”
    • Limits regulation of the commercial space launch industry for the next decade.
    • Rather than increasing government regulations now, the U.S. commercial space transportation industry is charged with developing, “voluntary consensus standards or any other construction that promotes best practices.”
    • Beginning on December 31, 2025, DOT may propose new regulations
  • Title II addresses DOT’s authority to license private sector parties to operate private remote sensing space systems.
  • Title III renames the Office of Space Commercialization as the Office of Space Commerce and specifies the roles of this office.
  • Title IV: “Space Resource Exploration and Utilization Act of 2015,” specifies:
    • “Any asteroid resources obtained in outer space are the property of the entity that obtained them, which shall be entitled to all property rights to them, consistent with applicable federal law and existing international obligations.”
    • “A U.S. commercial space resource utilization entity:
      • Shall avoid causing harmful interference in outer space, and
      • May bring a civil action in a U.S. district court for any action by another entity subject to U.S. jurisdiction causing harmful interference to its operations with respect to an asteroid resource utilization activity in outer space.”
    • This Act includes a “Disclaimer of Extraterritorial Sovereignty”
      • While commercial rights are specified in the Act, the U.S. “does not thereby assert sovereignty or sovereign or exclusive rights or jurisdiction over, or the ownership of, any celestial body.”

You can read a summary and the entire Act at the following link:

https://www.congress.gov/bill/114th-congress/house-bill/2262

To get a perspective on potential opportunities for asteroid mining, check out Asterank, which is a database on over 600,000 asteroids at the following link:

http://www.asterank.com

Many are “near-Earth” asteroids, with orbits that approach or cross Earth’s orbit.

Asterank screenshotSource: Asterank

Asterank includes important data such as asteroid mass, composition, and estimates of the costs and rewards of mining specific asteroids. Asterank was created and is maintained by Ian Webster. The firm Planetary Resources acquired Asterank in May 2013.

Once you’ve determined your target asteroid, you can plan to fetch it with the help of the 2012 “Asteroid Retrieval Feasibility Study” by the Keck Institute for Space Studies, which you can download from the following link:

http://www.kiss.caltech.edu/study/asteroid/asteroid_final_report.pdf

Planetary Resources’ business focus is on Earth observation and asteroid prospecting. You can read about the technologies they currently are developing to support asteroid prospecting at the following link:

http://www.planetaryresources.com/asteroids/#asteroids-intro

As noted by Planetary Resources, “near-Earth asteroids are the “low hanging fruit of the Solar System.” Their website identified eight candidate targets of interest.

With the reduced regulatory risk offered by the U.S. Commercial Space Launch Competitiveness Act, investors are certain to take a more favorable view toward making long-term investments in commercial launch vehicles and asteroid mining technologies. It will be years before commercial asteroid prospecting missions become a reality and much longer before the real economics of asteroid mining are known. Asteroid mining will require very large, long-term investments, but this isn’t science fiction any more.

The Story Behind the Apollo 8 Earthrise Photo

Peter Lobner

You’ve all seen the iconic, first-ever photo of Earthrise as seen from lunar orbit.

NASA Earthrise Source: NASA

This photo was taken during the first lunar orbital mission, Apollo 8, on 24 December 1968 by astronaut Bill Anders, with help from the other Apollo 8 crew members, Frank Borman and Jim Lovell.

NASA Goddard Spaceflight Center has reconstructed the events surrounding that historic photo using detailed lunar maps prepared from current Lunar Reconnaissance Orbiter (LRO) data, along with the photos taken by the Apollo 8 astronauts, data on the orientation and maneuvers of the Apollo 8 spacecraft, and the actual recorded conversations among the astronauts.

I think you will enjoy NASA Goddard’s 7-minute video reconstruction, which you can view at the following link:

https://www.youtube.com/embed/dE-vOscpiNc

Now, 47 years later, that photo is no less inspirational than it was the day it was first published. Thank you, Apollo 8, for a enduring Christmas present.