All posts by Drummer

2014 U.S. National Seismic Hazard Model and Induced Seismicity

Peter Lobner

The U.S. Geologic Society (USGS) National Seismic Hazard Model for the conterminous United States was updated in 2014 to account for new methods, input models, and data necessary for assessing the seismic ground shaking hazard from natural (tectonic) earthquakes. The National Seismic Hazard Maps are derived from seismic hazard curves calculated on a grid of sites across the U.S. that describe the annual frequency of exceeding a set of ground motions. Data and maps from the 2014 U.S. Geological Survey National Seismic Hazard Mapping Project are available for download at the following link:

http://earthquake.usgs.gov/hazards/products/conterminous/

The 2014 maps show higher seismicity in the Eastern U.S. than predicted in previous models. This reflects the significance of the 23 August 2011 magnitude 5.8 earthquake that occurred in Mineral, VA, about 11 miles from the North Anna nuclear power plant. That earthquake was felt as far north as Rhode Island, New York City and Martha’s Vineyard, Mass. The North Anna plant responded well and safely shutdown following the earthquake, which exceeded the plant’s seismic design basis.

The seismic hazard from “potentially induced” earthquakes (I.e., earthquakes that can be associated with man-made activities) was intentionally not considered because there was not a consensus on how to properly treat these earthquakes in a seismic hazard analysis.

The USGS issued a new report on 23 April 2015 examining the sensitivity of the seismic hazard from induced seismicity to five parts of the hazard model: (1) the earthquake catalog, (2) earthquake rates, (3) earthquake locations, (4) earthquake Mmax (maximum magnitude), and (5) earthquake ground motions. In the report, the USGS describes alternative input models for each of the five parts that represent differences in scientific opinions on induced seismicity characteristics.

You can download this interim report for free at the following link:

http://pubs.usgs.gov/of/2015/1070/

The USGS plans to issue a final model after further consideration of the reliability and scientific acceptability of each alternative input model. This matter could have important implications for industries, such as hydraulic fracking and geologic carbon dioxide sequestration, that may contribute to induced seismicity.

Messenger Spacecraft Mission at Mercury About to End

Peter Lobner

Updated 12 January 2016

The 1,069 pound Messenger (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft is only the second spacecraft sent to Mercury. Mariner 10 flew past Mercury three times in 1974 and 1975. Messenger was launched on 3 August 2004 and flew for 6-1/2 years on a circuitous trajectory that included 15 orbits of the sun, one flyby of Earth, two flybys of Venus, and three flybys of Mercury before entering orbit around Mercury in 18 March 2011. The series of planetary flybys allowed Messenger to decelerate relative to Mercury and achieve orbit with minimal use of fuel.

The NASA Messenger mission website is at the following link:

http://www.nasa.gov/mission_pages/messenger/main/index.html

Messenger is solar-powered, with its science payload and propulsion system located behind a sunshade to protect against the intense solar radiation encountered at Mercury’s close orbit of the Sun.

image  Source: Johns Hopkins University/APL

Messenger has instrumentation for mapping and characterizing Mercury using imaging cameras, laser altimeter, various spectrometers, magnetometer, and a radio science package to measure slight velocity changes in orbit. You can read details on the spacecraft instrumentation systems at the following link:

http://messenger.jhuapl.edu/the_mission/spacecraft_design.html

After four years in orbit, fuel needed to maintain orbit is expected to be depleted in April. Messenger’s orbit will decay and the spacecraft eventually will crash at perigee into Mercury’s surface at its orbital speed of 8,750 mph.

12 January 2016 update:

On 30 April 2015, Messenger crashed into the surface of Mercury on the side facing away from Earth.  Before crashing, Messenger orbited Mercury 4,105 times and collected more than 277,000 images.  A composite photograph of Mercury created from thousands of Messenger images is shown below:

Mercury composite imaages from MessengerSource: NASA /  Johns Hopkins University/APL

Dark Matter Map Unveils First Results

Peter Lobner

The Dark Energy Survey (DES) is designed to probe the origin of the accelerating universe and help uncover the nature of dark energy by measuring the 14-billion-year history of cosmic expansion with high precision. The survey involves more than 300 scientists from six countries and uses images taken by one of the best digital cameras in the world: the 570-megapixel Dark Energy Camera (DECam), mounted on the Victor Blanco telescope at the Cerro Tololo Inter-American Observatory, 500 km north of Santiago at an altitude of 2,200 meters in the Chilean Andes. For more information on this collaborative program, refer to the DES website at the following link:

http://www.darkenergysurvey.org

Two years into this survey, the DES team presented the first detailed map of dark matter concentrations in a very small sector of the sky.

image  Source: DES

The initial map covers just 0.4% of the sky, but in unprecedented detail. Eventually, DES plans to map one-eighth of the sky. Read details about this initial dark matter map at the following link:

http://www.bbc.com/news/science-environment-32284995?utm_source=howtogeek&utm_medium=email&utm_campaign=newsletter

Arctic Matters – The Global Connection to Changes in the Arctic

Peter Lobner

Arctic Matters is new public education resource produced by the Polar Research Board of the National Research Council (NRC) and published by National Academies Press (NAP). It draws upon a large collection of peer-reviewed NRC reports and other national and international reports to provide a brief, reader-friendly primer on the complex ways in which the changes currently affecting the Arctic and its diverse people, resources, and environment can, in turn, affect the entire globe.

image     Source: NAP

You can download this booklet for free from NAP at the following link:

http://www.nap.edu/catalog/21717/arctic-matters-the-global-connection-to-changes-in-the-arctic

You also can visit NRC interactive Arctic Matters website at the following link:

http://nas-sites.org/americasclimatechoices/more-resources-on-climate-change/arctic-matters-the-global-connection-to-changes-in-the-arctic-2/

Status of Three U.S. Commercial, Suborbital, Human Spaceflight Programs

Peter Lobner

XCOR and the Lynx spacecraft

This program should be near and dear to all Lynceans because we share a common mascot with XCOR. The Lynx two-seat, piloted space transport vehicle was intended to take humans and payloads on a half-hour suborbital flight to 100 km (330,000 feet) and then return to a landing at the takeoff runway. Lynx was designed as a horizontal takeoff and horizontal landing vehicle, using its own fully-reusable rocket propulsion system to depart a runway and return safely.

Lynx was designed for aircraft-like operations, with plans for up to four flights per day from any suitable, licensed spaceport. The spacecraft was being designed for 40 flights before planned maintenance actions are needed.

13-03-16_lynx-cutaway_v02_500x  Source: XCOR AerospaceSource: XCOR Aerospace

See details about the planned XCOR commercial space program at the following link:

http://xcor.com/lynx/

XCOR Update April 2018:  XCOR filed for bankruptcy on 8 November 2017 after it was unable to line up partners or new investors to enable it to complete development of the Lynx spaceplane. A nonprofit organization called Build A Plane purchased XCOR’s assets at auction for just under $1.1 million.

Build A Plane founder Lyn Freeman with unfinished Lynx prototype. Source: Douglas Messier/Space.com

You can read more about the bankruptcy filing here:

http://spacenews.com/xcor-aerospace-files-for-bankruptcy/

Virgin Galactic and the SpaceShipTwo spacecraft

SpaceShipTwo is Virgin Galactic’s vehicle for commercial, suborbital, human spaceflight. The spacecraft is carried to high-altitude by the White Knight 2 carrier aircraft, and then released to fly under rocket power to more than 100 km altitude and return for a landing at the takeoff runway.

SpaceShipTwo 3-view dwg  Source: Virgin Galactic

You can read more about this spacecraft at the following link:

http://www.space.com/17994-how-virgin-galactic-spaceshiptwo-works.html

After an in-flight accident during testing on 31 October 2014, Virgin Galactic’s first SpaceShipTwo was destroyed and the crew was killed. You can read details on the accident and the post-crash investigation at the following link:

http://www.space.com/27629-virgin-galactic-spaceshiptwo-crash-full-coverage.html

The second SpaceShipTwo is being built and was introduced in January 2015. You can read the latest news on Virgin Galactic’s commercial space program at the following link:

http://www.virgingalactic.com/latest-news/

When commercial spaceflight operations begin, they will take place at Spaceport America, which is located about 180 miles south of Albuquerque, NM. Below is a photo of the main building at the spaceport and the White Knight 2 carrier aircraft.

Spaceport America  Source: Virgin Galactic

 Blue Origin and the New Shepard spacecraft

Blue Origin’s New Shepard system will take astronauts to space on suborbital journeys using rocket-powered Vertical Take-off and Vertical Landing (VTVL) technology. The New Shepard vehicle includes a Crew Capsule carrying three or more astronauts atop a separate rocket-powered Propulsion Module, to be launched from a West Texas Launch Site. After descent and reentry into Earth’s atmosphere, the Crew Capsule will separate from the Propulsion Module and land under parachutes near the launch site. Meanwhile, the Propulsion Module will make a vertical, powered landing at the launch site and then be made ready for reuse on a later flight. An early design of this vehicle is shown below.

Blue-prototype-new_shepard  Source: Blue Origin

Blue Origin reported on 7 April 2015 that it had completed acceptance flight tests of its cryogenic BE-3 “deep-throttle” rocket engine that will power the reusable New Shepard spacecraft. “Deep throttle” means that the 110,000-lb.-thrust rocker engine can be throttled down to 20,000 lb. thrust, which is needed for a vertical landing. Autonomous flight tests of the spacecraft are scheduled to occur later in 2015. Engine development will continue into 2017.

Visit the Blue Origin website to read more on their commercial space program and BE-3 engine testing at the following link:

http://www.blueorigin.com

Radioisotope Thermoelectric Generators (RTG) for Spacecraft: History and Current U.S. Pu-238 Production Status

Updated 5 March 2021

Peter Lobner

Radioisotope Thermoelectric Generators (RTG), also called Radioisotope Power Systems (RTS), commonly use non-weapons grade Plutonium 238 (Pu-238) to generate electric power and heat for National Aeronautics and Space Administration (NASA) spacecraft when solar energy and batteries are not adequate for the intended mission. In comparison to other RTG heat sources (Strontium-90, Cesium-137), Pu-238 has a relatively long half-life of 87.75 years, which is a desirable property for a long-life RTG.

Approximately 300 kg (661 lb) of Pu-238 was produced by the Department of Energy (DOE) at the Savannah River Site between 1959 – 1988. After U.S production stopped, the U.S. purchased Pu-238 from Russia until that source of supply ended in 2010.

Limited production of new Pu-238 in the U.S re-started in 2013 using the process shown below. This effort is partially funded by NASA.  Eventually, production capacity will be about 1.5 kg (3.3 lb) Pu-238 per year. The roles of the DOE national laboratories involved in this production process are as follows:

  • Idaho National Engineering Lab (INEL):
    • Store the Neptunium dioxide (NpO2) feed stock
    • Deliver feed stock as needed to ORNL
    • Irradiate targets provided by ORNL in the Advanced Test Reactor (ATR)
    • Return irradiated targets to ORNL for processing
  • Oak Ridge National Lab (ORNL):
    • Manufacture targets
    • Ship some targets to INEL for irradiation
    • Irradiate the remaining targets in the High Flux Isotope Reactor (HFIR)
    • Process all irradiated targets to recover and purify Pu-238
    • Convert Pu-238 to oxide and deliver as needed to LANL
  • Los Alamos National Lab (LANL):
    • Manufacture the Pu-238 fuel pellets for use in RTGs

Pu-238 production process

Source: Ralph L McNutt, Jr, Johns Hopkins University APL, 2014

In 2015, the U.S. had an existing inventory of about 35 kg (77 lb) of Pu-238 of various ages.  About half was young enough to meet the power specifications of planned NASA spacecraft. The remaining stock was more than 20 years old, has decayed significantly since it was produced, and did not meet specifications.  The existing inventory will be blended with newly produced Pu-238 to extend the usable inventory. To get the energy density needed for space missions while extending the supply of Pu-238, DOE and NASA plan to blend “old” Pu-238 with newly produced Pu-238 in 2:1 proportions.

Since 2010, NASA’s RTG for spacecraft missions has been the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), which It is based on the SNAP-19 RTG flown on the two Viking Mars landers (circa 1975) and the Pioneer 10 and 11 deep space probes (circa 1972). At beginning of life, the current MMRTG can provide about 2,000 watts of thermal power and 110 watts of electrical power from eight General Purpose Heat Source (GPHS) modules that contain a total of 10.6 pounds (4.8 kilograms) of plutonium dioxide fuel. Electric conversion efficiency is about 6%.

Assembled MMRTG on a transport dolly.  Source: NASA

MMRTG cut-away diagram.  Source: NASA

You’ll find a NASA MMRTG Fact Sheet here:  https://rps.nasa.gov/resources/86/multi-mission-radioisotope-thermoelectric-generator-mmrtg/?category=fact_sheets

NASA had a program to develop an Advanced Stirling Radioisotope Generator (ASRG), which was designed to produce about four times the power of the MMRTG per unit of Pu-238. Electric conversion efficiency was about 26%. The ASRG required a total of 2.7 pounds (1.2 kilograms) of plutonium dioxide in two GPHS modules. However, the ASRG would produce less waste heat, which can be used productively to warm electronics in the interior of a spacecraft, such as the Mars rover Curiosity.  In November 2013, NASA announced that ASRG development had been discontinued because of budget cuts. You’ll find a NASA ASRG Fact Sheet at the following link:  https://rps.nasa.gov/resources/65/advanced-stirling-radioisotope-generator-asrg/

You can read a history of RTGs and more information on current U.S. Pu-238 production status in a 2014 presentation by Ralph L McNutt, Jr, at the following link: https://www.lpi.usra.edu/sbag/meetings/jan2014/presentations/08_1545_McNutt_Pu238_SBAG.pdf

9 February 2016 Update:

On 22 December 2015, DOE reported the first U.S. production in nearly 30 years of Pu-238.   This production demonstration, which was partially funded by the NASA, was performed at ORNL and yielded 50 grams of Pu-238.  The last U.S. production of Pu-238 occurred in the late 1980s at the Savannah River Plant in South Carolina.

DOE reported that it plans to set an initial production target of 300 – 400 grams (about 12 ounces) of Pu-238 per year. After implementing greater automation and scaling up the process, ORNL expects to reach the the production target of 1.5 kg (3.3 lb) Pu-238 per year.

The next NASA mission that will use an RTG is the Mars 2020 rover, which will use an MMRTG,  as used on NASA’s Mars rover Curiosity. 

You can read the ORNL announcement of initial Pu-238 production at the following link: https://www.ornl.gov/news/ornl-achieves-milestone-plutonium-238-sample

3 January 2019 Update:

In the past three years, ORNL has made scant progress in producing Pu-238.  In a 13 December 2018 article, “NASA Doesn’t Have Enough Nuclear Fuel For Its Deep Space Missions,”author Ethan Siegel reports:  “Although current production (at ORNL) yields only a few hundred grams per year (less than a pound), the laboratory has the eventual goal of ramping up to 1.5 kilograms (3.3 pounds) per year by 2023, at the earliest.  Ontario Power Generation in Canada has also begun producing Pu-238, with the goal of using it as a supplemental source for NASA.”  You can read the complete article on the Forbes website at the following link: https://www.forbes.com/sites/startswithabang/2018/12/13/nasa-doesnt-have-enough-nuclear-fuel-for-its-deep-space-missions/#1a73d47e1c18

The Canadian plans for becoming a source of Pu-238 was announced on 1 March 2017:  “Ontario Power Generation (OPG) and its venture arm, Canadian Nuclear Partners, are participating in a project to produce isotopes in support of deep space exploration. Under the agreement, OPG would help create isotopes at the Darlington nuclear station east of Toronto that will help power space probes.” You can read the complete OPG press release here: https://www.opg.com/news-and-media/news-releases/Documents/20170301_DeepSpace.pdf

Also see the OPG public relations piece, “OPG looks to the stars,”  here: https://www.opg.com/news-and-media/our-stories/Documents/20170802_OPG_Deep_Space.pdf

4 August 2020 Update:

The NASA Mars rover, Perseverance, was launched from Cape Canaveral on 30 July 2020, with an expected landing date of 18 February 2021 in the Jezero crater on Mars. Once on the surface, Perseverance will be powered by an MMRTG.

The Pu-238 and some other special materials for the Perseverence MMRTG were produced in the U.S. at ORNL, as described in the following short (2:03 minutes) video, “ORNL-produced tech fuels NASA’s Perseverance mission to Mars”:

In a 20 July 2020 news release, ORNL provided more information on the U.S. production process for Pu-238 and reported that, “the lab has been consistently increasing its Pu-238 production capabilities, aiming to produce 1.5 kilograms per year by 2026.”  You can read this ORNL press release here: https://www.ornl.gov/news/ornl-produced-plutonium-238-help-power-perseverance-mars

At the planned U.S. production rate for Pu-238, NASA should be able to conduct an MMRTG mission at about four-year intervals. If NASA MMRTG missions will be more frequent than this, the U.S. will need to purchase additional Pu-238 from another source, perhaps Canada.

5 March 2021 Update:

The Perseverance rover landed on Mars on 18 February 2021, in the planned target area in Jezero Crater.  Power from the MMRTG was nominal after landing.  Perseverance will spend at least one Mars year (two Earth years) exploring the landing site region.

The next NASA mission with an MMRTG-powered spacecraft is the Dragonfly mission to Saturn’s moon Titan, which will launch in 2026 and arrive on Titan in 2034.

The Voyager 1 and 2 spacecraft were launched in 1977, each with three RTGs delivering a maximum of 470 watts of electrical power at the beginning of the mission.  Both spacecraft have left the solar system (Voyager 1 in 2013 and Voyager 2 in 2018) and continue to transmit from interstellar space in 2021 with their RTGs operating at a reduced power level of about 331 watts after 44 years of Pu-238 decay during the mission.  NASA plans to continue the Voyager missions until at least 2025.

For more information:

How Close Are We to Cloning a Mammoth?

Peter Lobner

mammoth-cloning-840x420  Source: www.makeuseof.com

Mammoths lived from the Pliocene epoch, about 5 million years ago, into the current Holocene epoch; dying out about four thousand years ago.  Many lived in Arctic tundra regions in Siberia and northern Canada, where many frozen, relatively well-preserved mammoth “mummies” have been found in permafrost.   Scientists have been able to extract mammoth DNA from these remains.  Unfortunately, the mammoth DNA samples have been degraded by the long-term actions of water and oxygen and have been contaminated with DNA from other sources, such as: (1) bacteria that lived symbiotically in or on the mammoth, or (2) bacteria and fungi that existed in the environment where the mammoth was found.  Techniques exist to discriminate original mammoth DNA fragments from these other DNA sources.    Genetically, the mammoth is more closely related to the modern Asian elephant than the African elephant. Scientists are working to complete the mapping of the mammoth genome and identify all the differences with the Asian elephant genome.   In the not too distant future, it appears that it will be possible to splice mammoth DNA fragments into the complete DNA sequence of an Asian elephant.  If this work is successful, we may have the opportunity to visit a living mammoth in a “Pliocene Park” somewhere in the Arctic.

Read more details and see some very interesting embedded videos at the following link:

http://www.makeuseof.com/tag/far-cloning-mammoth/

CERN Announces Large Hadron Collider (LHC) Return to Operation

Peter Lobner

After a two-year shutdown for modifications that are expected to nearly double the maximum energy of LHC to 13 TeV, CERN has completed a long re-test process and restored LHC to operation. You can read about the restart process at the following link:

http://home.web.cern.ch/about/updates/2014/06/cern-announces-lhc-restart-schedule

image   Source: CERN

Re-start was delayed by an intermittent short circuit that had to be resolved after the superconducting machine had already been cooled down. Maintenance and repair is time-consuming when a superconducting component or system is involved, since the equipment must be warmed up before it can be serviced, and then cooled down again to 1.9 degrees Celsius before LHC operation can resume.

With the LHC back in operation, the search for more Higgs Bosons and signs of supersymmetry continues. Read more about LHC operations at the following link:

http://www.cnet.com/news/after-refit-lhc-accelerator-resumes-hunt-for-new-higgs/

You also might want to review Maria Spiropulo’s 27 August 2014 Lyncean presentation: “The Future of the Higgs Boson.” You can find this presentation in the Past Meetings section of this Lyncean website.

Where on Earth Does Lightning Flash Most?

Peter Lobner

According to satellite observations summarized in the following map, lightning occurs more often over land than over the oceans and more often closer to the equator.

image   Source: NASA

The map above shows the average yearly counts of lightning flashes per square kilometer from 1995 to 2013. The map was created using data collected from 1998–2013 by the Lightning Imaging Sensor (LIS) on NASA’s Tropical Rainfall Measuring Mission satellite, and from 1995–2000 by the Optical Transient Detector (OTD) on the OrbView 1/Microlab satellite. Flashes above 38 degrees North were observed by OTD only, as the satellite flew to higher latitudes.

Areas with the fewest number of flashes each year are gray or purple; areas with the largest number of lightning flashes—as many as 150 per year per square kilometer—are bright pink.  Be careful where you pitch your tent if you go on safari in central Africa.

Check out the story at the following link:

http://earthobservatory.nasa.gov/IOTD/view.php?id=85600

First Autonomous Car to Drive (Most of the Way) Across Country

Peter Lobner

American automotive supplier Delphi modified a 2014 Audi SQ5 to make it capable of driving autonomously and then had it drive 3,400 miles on highways from San Francisco to New York City. The human “co-pilot” took control for about 1% of the distance on city streets.

image Source: www.wired.com

Read the story, including details on the car’s autonomous driving features, at the following link:

http://www.wired.com/2015/04/delphi-autonomous-car-cross-country/?utm_source=howtogeek&utm_medium=email&utm_campaign=newsletter

An important point made in this article is the great speed with which autonomous vehicle technology has advanced. In the first DARPA Grand Challenge in March 2004, all 15 competing autonomous vehicles failed to complete a very difficult 142 mile off-road course from Barstow, CA to Primm, NV. The greatest distance completed by the “winner” was 7.32 miles. In September 2005, five vehicles completed a 132 mile Grand Challenge course in southern Nevada. The third Grand Challenge in 2007 was held in an urban street environment in Victorville, CA. Six of 11 competing teams completed the course. SAIC supported a team in all three Grand Challenges.

For more information, check out the 2014 article, “The DARPA Grand Challenge – 10 Years Later,” at the following link:

http://www.darpa.mil/newsevents/releases/2014/03/13.aspx

Read details on the 2004 Grand Challenge at the following link:

http://spectrum.ieee.org/robotics/robotics-software/dusted-no-winners-in-darpas-1-million-robotic-race-across-the-mojavedesert

And details on the 2005 Grand Challenge at:

http://www.researchgate.net/profile/Erik_Blasch/publication/2961674_Unmanned_Vehicles_Come_of_Age_The_DARPA_Grand_Challenge/links/0deec525dbe44b0bea000000.pdf

And details on the 2007 urban challenge at:

http://archive.darpa.mil/grandchallenge/TechPapers/Sting_Racing.pdf