Category Archives: All Posts

A Trend of Increasing Neutron Count Rates Detected at Chernobyl

Peter Lobner

The accident at Chernobyl Unit 4 occurred on 26 April 1986.  A post-accident view of the Unit 4 reactor building is shown below.

Post-accident west-east building cross-section of Chernobyl Unit 4. 
Source: G.G. Pretzsch, et al. (2002)

A temporary “sarcophagus” was hastily erected around Unit 4 to provide some protection for the recovery workers and the public, to stabilize the damaged building and protect its interior from the effects of weather.  Since November 2016, Unit 4 has been fully enclosed within the more substantial New Safe Confinement (NSC) building.  You’ll find a good overview of the NSC at the Chernobyl Gallery website here:  http://www.chernobylgallery.com/chernobyl-disaster/new-safe-confinement/

On 5 May 2021, Richard Stone, writing for Science magazine, reported online that, “Sensors are tracking a rising number of neutrons, a signal of fission, streaming from one inaccessible room, Anatolii Doroshenko of the Institute for Safety Problems of Nuclear Power Plants (ISPNPP) in Kyiv, Ukraine, reported last week during discussions about dismantling the reactor..….ever since its (the NSC) emplacement, neutron counts in most areas in the Shelter have been stable or are declining. But they began to edge up in a few spots, nearly doubling over 4 years in room 305/2, which contains tons of FCMs (fuel containing material) buried under debris.” Modeling by the ISPNPP suggests that the increasing neutron count rates may be related to the gradual drying of the FCMs.  Other phenomena may be contributing, such as the observed long-term disintegration and change of consistency of some FCM formations in the rubble.

The ceiling of room 305/2 was directly under the Unit 4 reactor core.  From the force of the accident, that ceiling was driven down by almost four meters.

The original inventory of uranium in the Unit 4 core was about 180 metric tons enriched to 3%. In a French-German study of the condition of the Chernobyl sarcophagus, authors G.G. Pretzsch, et al. reported that about 96% of the original nuclear fuel inventory remained inside the sarcophagus.  The distribution was estimated as summarized in the following table.  The authors estimated that about one-half of the total fuel mass was in Room 305/2. 

Post-accident estimated distribution of fuel masses at
Chernobyl Unit 4. Source: G.G. Pretzsch, et al. (2002)

The condition of room 305/2 is described in considerable detail (in Russian) in the 1998 IAEA Report INIS-UA—062, “Room 305/2 Block 4 of the Chernobyl NPP: Its Condition, Assessment of the Amount of Fuel.”  The room is a jumble of damaged building structural elements, reactor parts, and FCM in various forms, including “lava” flows.

Physical model of sub-reactor room 305/2. 
Source: A.A. Borovov, et al. (1998)

The authors reported on estimates developed using a variety of methods, as summarized in the following table, and concluded that the best estimate for room 305/2 was ≥ 60 metric tons of uranium.

Estimates of the amount of fuel material in sub-reactor room 305/2. 
Source: A.A. Borovov, et al. (1998)

You’ll find my machine translation of this IAEA report to English, including the legend for the above figure, at the following link: https://lynceans.org/wp-content/uploads/2021/05/Chernobyl-Room-305_2-Assessment.pdf

Ukraine has long intended to remove the FCMs from the Unit 4 debris and store them in a geological repository. This plan remains under development, but now may have a new sense of urgency.

For more information

The Giant Air-Launch Mothership, Roc, Makes its Second Flight

Peter Lobner

After Paul Allen’s death on 15 October 2018, the Stratolaunch Systems company he founded lost the broad air launch business vision it had under his leadership. A year later, on October 2019, the private equity firm Cerberus Capital Management became the new owner of the firm renamed Stratolaunch, LLC.  Another year later, in November 2021, Stratolaunch LLC announced its new air launch business vision with an initial focus on missions involving a prototype reusable hypersonic rocket plane called the Talon-A. Stratolaunch has engaged the aerospace firm Calspan (https://www.calspan.com/stratolaunch-testing/) to build and test models of the Talon-A.  As described on the Stratolaunch LLC website (https://www.stratolaunch.com), Talon-A is only the first of a family of air-launched vehicles that will be developed to establish “a complete air-launch vehicle ecosystem.”  It looks like Paul Allen’s broad air launch business vision still may be alive and well under new leadership.

In an important milestone for Stratolaunch LLC, their giant carrier aircraft, Roc, returned to the air for the second time from the Mojave Air and Space Port in southern California on 29 April 2021, more than two years after its first flight on 13 April 2019.

Stratolaunch’s Roc carrier plane during its second test flight
on 29 April 2021.  Source: Stratolaunch
Stratolaunch’s Roc carrier plane during its second test flight
on 29 April 2021.  Source: Stratolaunch
The Roc on its landing approach at Mojave Air and Space Port at the end of its second flight. Source: AP Photo/Matt Hartman

During its second flight on 29 April 2021, the Roc reached a maximum altitude of 14,000 feet (4,267 m) and a top speed of 199 mph (320 kph).  The 28-wheel undercarriage remained extended for the whole flight.

At some point in the future, the Roc carrier aircraft test flight program will transition to captive carry flights with a Talon-A vehicle, followed by drop tests and finally actual flight tests of the hypersonic vehicle.  

Stratolaunch explains that its Mach 6-class Talon-A vehicle is designed to make hypersonic testing more routine. They describe the Talon-A as follows:

“The Talon-A features a length of 28 feet (8.5 m), a wingspan of 11.3 feet (3.4 m), and a launch weight of approximately 6,000 pounds (2,722 Kg). It will conduct long duration flight at high Mach, and glide back for an autonomous, horizontal landing on a conventional runway. It will also be capable of autonomous takeoff, under its own power, via a conventional runway.”

Rendering of the Mach-6 Talon-A hypersonic vehicle in flight. 
Source: Stratolaunch

Beyond Talon-A, Stratolaunch is developing a larger hypersonic vehicle named Talon-Z.  A longer-term objective is to develop the Black Ice fully reusable space plane that will be able to fly payloads and crew to orbit and return them to Earth for a landing at a conventional airport. The initial design will be optimized for unmanned cargo launch and return missions. A follow-on manned version will be optimized for transporting crews and cargo to and from orbit. 

Stratolaunch’s planned family of aerospace vehicles is shown in the following graphic.

The Stratolaunch carrier vehicle, Roc, is shown with three hypersonic vehicles ready for launch.  Below (L to R) are the Talon-Z and Talon-A hypersonic vehicles and the
Black Ice orbital space plane.  Source: Stratolaunch

If you’re interested, you can subscribe to the Stratolaunch newsletter on their website.

For more information:

Anti-Stars and Anti-Star Clusters May be Hiding in Plain Sight

Peter Lobner

It is generally assumed that all of the observable objects in our universe in composed of ordinary matter.  The rationale for this assumption if explained in a 1999 Scientific American article by Steve Naftilan: https://www.scientificamerican.com/article/how-do-we-know-that-dista/

In most of the electromagnetic spectrum, a star composed of normal matter and a star composed of antimatter (anti-star) will look the same to an observer on Earth. Their visible spectra will be indistinguishable. A key difference in behavior may be observable in the gamma ray spectrum, where high-energy gamma rays characteristic of matter-antimatter annihilation (i.e., baryon-antibaryon reactions) may reveal the identity of an antimatter star within our galaxy or an antimatter star cluster outside our galaxy.  Luigi Foschini provides a good introduction to this subject in his 2000 paper at the following link: https://cds.cern.ch/record/447091/files/0007180.pdf

NASA’s Alpha Magnetic Spectrometer (AMS) has developed into an important tool in the search for anti-stars. The prototype, AMS-01 flew on the STS-91 Space Shuttle mission from 2 to 12 June 1998 and was successfully tested in orbit. The full-scale AMS-2 was launched aboard the STS-134 Space Shuttle mission on 16 May 2011. Since it was installed on the International Space Station (ISS) and activated on 19 May 2011, this 18,739 pound (8,500 kg), 2,250 cu. ft (64 cu meter) instrument has collected and analyzed more than 165 billion cosmic ray events (as of April 2021), and identified 9 million of these as antimatter, including the possible detection of antihelium nuclei.

You’ll find more information on AMS-1 and -2 on the NASA website here: https://ams.nasa.gov

AMS-2 installed on the ISS.  Source: NASA

Another important source of data related to antimatter in our universe is NASA’s Fermi Gamma-ray Space Telescope, which was launched into a low Earth orbit on June 11, 2008.  NASA’s website for the ongoing Fermi mission is here: https://fermi.gsfc.nasa.gov

The entire sky at gamma-ray energies greater than 1 GeV based on five years of data from Fermi’s Large Area Telescope (LAT) instrument. Brighter colors indicate brighter gamma-ray sources. Source: NASA/DOE/Fermi LAT Collaboration

In an 8 February 2021 article, astrophysicist Paul Sutter postulates the existence of antimatter star clusters that escaped the primordial matter-antimatter annihilations and now exist in relative isolation, for example, as an antimatter star cluster orbiting our Milky Way galaxy.  

The antimatter stars in the cluster would continuously shed antimatter into the cosmos, leading to subsequent matter-antimatter interactions that produce high-energy particles that may be detectable from Earth.

Sutter commented, “…if astronomers are able to pinpoint a globular cluster as a particularly strong source of anti-particles, it would be like opening a time capsule, giving us a window into the physics that dominated the universe when it was only a second old.” 

In a 20 April 2021 paper, authors Dupourqué, Tibaldo, and von Ballmoos report the possible detection of 14 anti-stars within our Milky Way galaxy.  They used 10 years of data on 5,800 gamma-ray sources in Fermi’s data catalog to develop an estimate of the possible abundance of anti-stars. The authors report: “We identify in the catalog 14 anti-star candidates not associated with any objects belonging to established gamma-ray source classes and with a spectrum compatible with baryon-antibaryon annihilation.”  

Fourteen celestial sources of gamma rays (colored dots in this all-sky map of the Milky Way; yellow / green indicates bright sources and blue shows dim sources) may come from stars made of antimatter.  Source: Simon Dupourqué / IRAP via ScienceNews

The 14 anti-star candidates await further analysis to confirm or refute their existence.  If confirmed, they represent only a small fraction of the population of all gamma-ray sources observed by the Fermi Gamma-ray Space Telescope.  Nonetheless, even one confirmed anti-star would be a remarkable achievement.

For more information:

NASA’s Mars Helicopter Ingenuity is the First Aircraft to Fly on Mars

Peter Lobner

NASA’s Perseverance rover landed on Mars on 18 February 2021 carrying an impressive suite of scientific instruments and another vehicle, the autonomous Mars helicopter Ingenuity.  The Perseverance rover joins the Curiosity rover and the InSight lander, as active NASA missions on the surface of Mars. The Perseverance mission website here: https://mars.nasa.gov/mars2020/

One of the important objectives of this mission is to demonstrate that the solar-powered Ingenuity helicopter can fly in the thin atmosphere of Mars.  On Earth, our standard sea level air pressure is 1,013 millibars. On Mars, the surface atmospheric pressure varies during the year, but averages between 6 to 7 millibars.  That’s equivalent to an Earth pressure altitude of 88,000 to 90,600 ft (27,127 to 27,615 m). On Earth, the helicopter altitude record is 40,820 ft (12,442 m).  During development, Ingenuity’s rotor system was tested in a high-altitude chamber to validate its expected performance.

Ingenuity was carried under the rover and was deployed on 3 April 2021, about six weeks after landing.

View of Ingenuity on the surface of Mars after it was deployed by the Perseverance rover. Source:  NASA / JPL

After system checkouts and software updates, Ingenuity flew for the first time on 19 April 2021, becoming the first aircraft ever to fly on Mars. The first flight took place in Jezero Crater, lasted 39 seconds, and covered a vertical distance of about 10 feet (3 m), with Ingenuity landing back at the takeoff point. For this first flight, the Perseverance rover was parked about 211 feet (64.3 meters) away and chronicled the flight operations with its cameras.

Ingenuity lifts off & rises vertically about 10 feet before landing at the takeoff point.  Use the red-circled rock as a common point of reference in each frame. Source: Screenshots from NASA video.
Ingenuity altimeter data confirmed the first flight. 
Source: Screenshot from NASA video.
Shadow on the ground of Ingenuity in flight, 
taken from its own downward-looking navigation camera. 
Source: Screenshot from NASA video.

You can watch a short (0:58 minute) HD video of the first flight here: https://www.facebook.com/NASAPersevere/videos/201857924836638/

A longer (47:20 minute) video from NASA Mission Control is here:

The Mars helicopter was conceived as a 30-day technology demonstration. To meet the weight and space budgets allocated for the Mars Helicopter, Ingenuity had to be a very compact, lightweight flying machine. The 1.8 kg (4.0 lb) mini-copter flies with two electric motor driven, counter-rotating, coaxial rotors about 1.1 m (3 ft 7 in) in diameter.  The rotors are powered from a rechargeable 2 Ah (Amp-hour) lithium-ion battery.  This is similar to the battery capacity of many cell phones. The general arrangement of the Ingenuity Mars helicopter is shown in the following diagram.

Mars Helicopter. Source: NASA/JPL-Caltech  

For more information on Ingenuity, visit the NASA website here: https://mars.nasa.gov/technology/helicopter/

The Earth 300 Eco-Yacht Could Serve as a Prototype for De-carbonizing the World’s Commercial Marine Transportation Fleets

Peter Lobner

In early April 2021, a flurry of articles described the beautiful, futuristic, nuclear-powered eco-yacht conceived by entrepreneur Aaron Olivera, CEO of Earth 300 (https://earth300.com), and introduced in Singapore as his concept for a signature vessel for conducting environmental research and raising environmental awareness around the world.

Aaron Olivera and the Earth 300 eco-yacht. Source: Archyde.com

This sleek yacht is almost 300 meters long with a prominent cantilevered observation deck near the bow and a 13-story glass “science sphere” amidships. Olivera describes this vessel as follows: 

“Earth 300 it is an extreme technology platform for science, exploration and innovation at sea. Its mission is to ring the ecological alarm on a global scale and combat climate change. Using technology it will quickly scale and deploy solutions to market. Its ultimate ambition is to inspire billions of people to contribute to the preservation of our shared planet, and becoming a sustainable and future worthy civilization.”

The ship’s design was developed by Ivan Salas Jefferson, founder of Iddes Yachts (https://iddesyachts.com), in collaboration with the Polish naval architecture firm NED (https://www.ned-project.eu). Mikal Bøe is the CEO of London-based Core Power (https://corepower.energy), which will supply the next-generation, inherently safe marine molten salt reactor (m-MSR) power plant, using MSR technology developed by the US nuclear company TerraPower (https://www.terrapower.com) that was co-founded by Bill Gates. 

The general arrangement of the ship’s inhabited spaces.
Source: Earth 300

The current design has taken six years and $5 million to develop.  Earth 300 reports that it is making good progress toward getting an Approval in Principle (AIP) from RINA (formerly Registro Italiano Navale). RINA is a founding member of the International Association of Classification Societies (IACS), which promotes safer and cleaner shipping worldwide.  The AIP is a framework used by RINA to review and approve innovative and novel concepts that are not covered by traditional classification prescriptive rules, so that a level of safety in line with the current marine industry practice is provided. The AIP process is a risk-based approach to classification that allows for new designs and novel concepts to be validated with safety equivalencies.

Following the AIP, Earth 300 should be able to request construction quotes from one or more shipyards, likely in Europe and/or South Korea. The ship will be equipped with 22 laboratories for about 160 scientists, cutting-edge artificial intelligence (AI) and robotics systems, and facilities for operating helicopters and submersible and semi-submersible vehicles.  Earth 300 executives reportedly estimated that the total construction cost will be between $500 million and $700 million.

The observation deck is located atop the bow section of the ship.
Source: Earth 300
Foredeck helipad and hangar for a helicopter. Source: Earth 300
The sphere houses a “science city” where most of the shipboard research facilities are located.  Source: Earth 300

Once in operation, the ship is certain to command attention wherever it goes, as a recognizable symbol for environmental protection.  This notoriety may be enough to attract wealthy tourists willing to pay $3 million for a 10-day cruise in the 10 luxury suites with private balconies and accommodations for personal staff in a separate set of cabins.  That sort of money will buy a lot of selfies, instagrams and some durable bragging rights. 

The ship is designed to accommodate 425 people, including the ship’s crew, scientists, and the group of wealthy tourists paying full price. In addition, it has been reported that Olivera envisages inviting groups of other people to travel at a lower price or even for free. For example, 10 suites would be made available to what Olivera calls Very Interesting Persons – people from all walks of life who would bring unique experience or knowledge to the voyage. In addition, some lucky artists, explorers and students may travel for free.

While I’m impressed with the general concept of this ship, I feel that the primary benefit of this grand vessel can’t be to serve as a mobile marine “mixer” for a few very wealthy individuals to associate with scientists, some elite Very Interesting Persons, and a patchwork of others interested in environmental protection.

Like the 3 AM infomercial says, “But wait, there’s more.” Research performed aboard the ship would be “open source” and shared with other research efforts around the world.  That’s great, but more information is needed on the meaningful research programs that would be conducted on the Earth 300 vessel in segments that match the schedule and route of what is essentially a cruise ship.  It seems that a much less expensive dedicated vessel could accomplish the same research while not serving as an environmental sideshow on a cruise ship.

With the ship scheduled to launch in 2025, the vessel itself will be ready many years before the planned marine molten salt reactors (m-MSRs) have been developed and approved by the appropriate nuclear and marine regulatory agencies.  Therefore, it is likely that the vessel will be designed to operate initially with a conventional marine power plant running on synthetic “renewable” fuels.  This isn’t exactly a big step in the right direction for helping to reduce the carbon emissions from worldwide commercial marine transportation.

Like the 3 AM infomercial says, “But wait, there’s more,” or at least, there should be.

Core Power, the developer of the m-MSR planned for the Earth 300 vessel, is designing their 15 MWe inherently safe micro-reactor system as a zero-carbon replacement power source for the fossil-fueled power plants in many commercial marine vessels. On their website, Core Power presents the following business case:

“Over the next few decades as many as 60,000 ships must transition from combustion of fossil fuels to zero-emission propulsion. The UN’s maritime agency IMO has mandated with unanimous approval from 197 countries that shipping must reduce emissions by 50% of the 2008 total, before 2050. This means an actual emission reduction of almost 90%, by 2050. MSR technology being developed by the consortium could achieve that goal, by powering production of green sustainable fuels for smaller ships and providing onboard electric power for large ships, with zero emissions as standard.”

A set of six small, compact Core Power m-MSRs could generate
90 MWe (about 120,000 hp). Source: Core Power

I think it is actually fortuitous that the Earth 300 vessel will start its life as a fossil-fueled vessel.  From this starting point, Earth 300 will be at the vanguard of a new generation of inherently safe marine nuclear power system development and deployment.

Converting the Earth 300 vessel to nuclear power will move the discussions on commercial marine nuclear power from the academic domain, where it has languished for many decades, to the commercial marine nuclear safety regulatory domain, which has been inactive for decades and likely is not prepared for this new applicant.  By being first in line, Earth 300 and Core Power take on substantial licensing risk that certainly will add to the time and cost of their nuclear licensing efforts.  However, they are in unique positions as a reactor supplier and a vessel operator to help shape the licensing dialogue pertaining to the use of inherently safe micro-reactors in marine vessels, and the worldwide operation of vessels using such reactors.

The experience gained from converting Earth 300 from fossil to nuclear power will de-risk the nuclear power conversion process for the entire marine transportation industry.  

  • Regulatory precedents will have been established for the reactor designer and the vessel operator. 
  • The conversion experience will yield many metrics and lessons learned that will help in planning and executing subsequent conversions. 
  • Ports around the world will be on notice that commercial nuclear-powered vessels once again are a reality and appropriate port-specific nuclear safety plans may be required

In this role alone, Earth 300 will create a path for the commercial marine transportation industry to meet the IMO’s 2050 emission goal.  This would be a truly substantive accomplishment that will far outweigh the ship’s public relations accomplishments as a symbol of environmental protection and showcase for environmental research.

I hope Aaron Olivera gets the support he needs to build the Earth 300 ship and subsequently convert it to nuclear power.  At one level, the ship is a grand gesture.  On another level, the nuclear powered ship is a substantive step toward a future with zero-carbon commercial marine transportation.

For more information

Multi-messenger Astronomy Provides Extraordinary Views of Uranus

Peter Lobner, updated 19 December 2023

1. Introduction

Uranus, the seventh planet from the Sun, is an ice giant planet with 27 known moons in a unique orbit beyond Saturn. Uranus makes a complete orbit around the Sun in about 84 Earth years. It is the only planet whose equator is tilted nearly at a right angle to its orbital plane, which results in the polar regions pointing toward the Sun (and Earth) during parts of the orbit.

Uranus was visited briefly by NASA’s Voyager 2 spacecraft during its January 1986 flyby, which came within 81,500 km (50,600 miles) of the planet’s cloud tops. Since then, Uranus has been studied at visible, near-infrared and X-ray wavelengths from the perspective of terrestrial and near-Earth, space-based observatories.

Visible light has a wavelength in the range from about 350 to 750 nanometers (nm, 10-9meters) or 3,500 to 7,500 Angstroms.  Near-infrared light is the part of the infrared spectrum that is closest to the visible light spectrum, but at a longer wavelength, from about 800 to 2,500 nm.  X-rays have a much shorter wavelength, from about 20 to 0.001 nm.  In the following chart, you can see the relative placement of visible and near-infrared light and X-rays in the electromagnetic spectrum.

Electromagnetic spectrum. Source: Wikipedia

2. 2021 composite images of Uranus at visible / near-infrared and X-ray wavelengths

In March 2021, the National Aeronautics and Space Administration (NASA) announced that its orbiting Chandra X-ray Observatory had made the first ever detection of X-rays coming from the ice giant planet Uranus.  Recent analysis of Chandra observations from 2002 and 2017 resulted in this discovery. You can read NASA’s 2021 announcement of this discovery here: https://chandra.si.edu/photo/2021/uranus/

X-rays coming from other planets have been detected in the past.  NASA reported, “Like Jupiter and Saturn, Uranus and its rings appear to mainly produce X-rays by scattering solar X-rays, but some may also come from auroras…… The X-rays from auroras on Jupiter come from two sources: electrons traveling down magnetic field lines, as on Earth, and positively charged atoms and molecules raining down at Jupiter’s polar regions. However, scientists are less certain about what causes auroras on Uranus.”  

Another possible X-ray source could be from an interaction between Uranus’ rings and the near-space charged particle environment around the planet.  This phenomenon has been observed at Saturn.

In connection with the discovery of X-rays coming from Uranus, NASA released two spectacular composite (multi-messenger) images of the planet created by combining images from two different parts of the electromagnetic spectrum: optical / near-infrared and X-ray. 

The components of the first composite image are described below:

  • Near-infrared image: This was taken in July 2004 with the 10-meter (32-foot 10-inch) Keck-1 telescope located at an altitude of 4,145 meters (13,599 ft) on Maunakea, Hawaii.
  • The X-ray image: This was produced with 7 August 2002 data from the Advanced CCD Imaging Spectrometer (ACIS) aboard Chandra, which has a spatial resolution of 0.5” (seconds). The angular size of Uranus for the observation was 3.7”. The X-rays were in the 0.6 to 1.1 keV (2.1 to 1.1 nm) spectral range, which is consistent with X-ray emissions from Jupiter and Saturn. 
(Left) Keck-1 July 2004 near-infrared image of Uranus. The North Pole is at the 4 o’clock position. Sources: Space Science Institute;  University of Wisconsin-Madison / W. M. Keck Observatory (Right) Chandra August 2002 ACIS X-ray image of Uranus.  Sources: NASA/CXO/University College London
2021 Keck-1 & Chandra ACIS composite image

The second 2021 composite image, shown below, was created from a Keck optical image and X-ray images made with Chandra’s High Resolution Camera (HRC) during observations on 11 and 12 November 2017.  The HRC is sensitive to softer X-ray emissions (down to 0.06 keV, 20.7 nm) than ACIS, enabling it to collect more photons in the 0.1–1.2 keV (12.4 to 0.1 nm) range most important for planetary studies. The authors report, ”These fluxes exceed expectations from scattered solar emission alone, suggesting either a larger X-ray albedo than Jupiter/Saturn or the possibility of additional X-ray production processes at Uranus.”

2021 Keck & Chandra HRC composite image
Sources:  X-ray: NASA/CXO/University College London/W. Dunn 
et al; Optical: W.M. Keck Observatory

The authors conclude by noting that, “Further, and longer, observations with Chandra would help to produce a map of X-ray emission across Uranus and to identify, with better signal-to-noise, the source locations for the X-rays, constraining possible contributions from the rings and aurora…… However, the current generation of X-ray observatories does not provide sufficient sensitivity to spectrally characterize the short interval temporal fluctuation observed in the November 12, 2017 observation.”

New space-based X-ray observational capabilities are being developed by NASA and the European Space Agency (ESA), but won’t be operational for a decade or more:

3. 2023 JWST near-infrared images of Uranus

The James Webb Space Telescope (JWST), which has four science instruments designed to observe at optical to mid-infrared (0.6 – 28.3 microns) wavelengths, produced its first images of Uranus in April 2023.

Annotated image of Uranus captured by the JWST on 6 Feb. 2023,  provides a view of the bright North polar ice cap and glowing clouds at near-infrared wavelengths of 1.4 to 3.0 microns. Sources: NASA, ESA, CSA, STScI

Wide field image of Uranus captured by the JWST on 6 Feb. 2023 at near-infrared wavelengths of 1.4 to 5.0 microns. Note  that 14 of the 27 known moons are identified in the image. Also note the many distant galaxies in this image. Sources: NASA, ESA, CSA, STScI

Enlarged view of the 6 Feb. 2023 JWST near-infrared image shows the bright North polar cap, glowing clouds, details of the ring structure and many of the inner moons. Sources: NASA, ESA, CSA, STScI

4. For more information:

Polarized Image Provides New Insights Into the M87 Black Hole

Peter Lobner, 25 March 2021

The first image of the shadow of a black hole was released on 10 April 2019 by the Event Horizon Telescope (EHT) collaboration and the National Science Foundation (NSF).  The target of their observation was the supermassive black hole located near the center of the Messier 87 (M87) galaxy, which is about 55 million light years from Earth.  That black hole is estimated to have a mass 6.5 billion times greater than our Sun.

Non-polarized image of M87 released 10 April 2019.  Source: EHT & NSF

After further analysis of the historic M87 data, EHT astronomers have been able to measure the polarization of the radio frequency signals from the bright disk of the black hole.  Polarization is a signature of the direction of the very strong magnetic fields in the hot glowing gas at the edge of a black hole, which can be seen in the following image released on 24 March 2021.  

Polarized image of M87 released 24 March 2021.  Source: EHT 

The ability to measure the polarization in fine detail provides a new tool for mapping the dynamic magnetic field structure of a black hole.  The new image shows the magnetic fields in the swirling accretion disk, which contains matter that is falling into the black hole.  

Researchers also measured polarization that is pointing directly toward or away from the black hole, perpendicular to the accretion disk.  Very strong magnetic fields in these directions may be responsible for launching plasma jets into space, away from the black hole.  Such jets have been observed emanating from some black holes.

These are exciting times in astronomy and astrophysics.

For more information:

The Amazing America’s Cup AC75 Foiling Monohull Flying Boat

Peter Lobner, 25 February 2021

The first race of the 36th America’s Cup racing series starts on 5 March 2021 in Auckland, New Zealand.  The defending Emirates Team New Zealand and the challenging Luna Rossa Prada Pirelli Team will be sailing (or rather flying) a radical new class of America’s Cup boats knows as the AC75, which is a foiling monohull that was designed from the ground up to “fly” on its foils.  It isn’t clear if the AC75 is a flying boat or a sailing airplane.

Emirates Team New Zealand boat Te Rehutai (Sea Spray) in flight. 
Source: Royal New Zealand Yacht Squadron

The Luna Rossa Prada Pirelli Team won the right to challenge based on its performance in the Prada Cup match races held from 14 January thru 20 February 2021. The America’s Cup races are scheduled from 5 to 14 March 2021.  You’ll find complete information on the races on the America’s Cup website at the following link:  https://www.americascup.com

Luna Rossa in flight.  Source: Luna Rossa Prada Pirelli Team

The New York Yacht Club American Magic entry, Patriot, was eliminated during the Prada Cup races, after recording no wins in the Round Robin series and no wins in the semi-final races against Luna Rossa.  Patriot was damaged and in danger of sinking following a dramatic high-speed capsize following a tack in gusty wind conditions while leading Luna Rossa during Round Robin 2 Race 3 on 16 January 2021.

Patriot in flight, but out of control and starting to capsize, 16 Jan 2021. 
Source: America’s Cup video screenshot

The AC75 operates with two completely different sets of boat dynamics:

  • Waterborne while accelerating at maximum power to quickly reach foiling speed at 12 – 14 knots
  • Flying on the foils to reach a top speed that can exceed 50 knots

Making a smooth transition from waterborne to flying on the foils can be a big challenge for the crew.  As the transition is being made, the power demand drops rapidly (suddenly) as the hull emerges from the water and starts flying on the foils.  The crew must quickly adjust sail power and trim to maintain control of the flying boat.

As you would expect, there are extensive regulations governing most aspects of the boat’s design.  The Rule is explained at the following link: https://www.americascup.com/en/official/the-class-rule

To get an introduction to an AC75 boat and its primary components, you can view a 3-D model here: https://www.americascup.com/en/ac75

The AC75 is a very lightweight vessel, with a fully-loaded weight of 7,600 kg (16,800 lb).  The empty weight, not including sails or crew, is limited to 6,520 kg (14,374 lbs.). Of that, 3,358.5 kg (7,403 lb) is supplied by, or specified by, the America’s Cup event organizer, and includes the following standard items for all teams.

  • Mast: A detailed specification; essentially a one-design mast with a D-shaped leading edge; teams can choose their manufacturer.
  • Rigging: Supplied to all teams.
  • Media equipment: Cameras, mounting hardware, power & controls supplied to all teams.
  • Foil cant arms and hydraulic control system: Standard system developed, tested and supplied to all teams by one manufacturer.  The hydraulic system is powered manually by hand-operated grinders.  The hydraulic system includes an interface to the trailing edge flaps on the foils supplied by each team.
Foil cant arms and hydraulic control system. 
Source, both graphics: AmericasCup.com

Each team is responsible for designing and building the rest of the boat while remaining within an empty weight budget of 3,161.5 kg (6,968 lb). The primary areas for innovation by each team are the following:

  • Hull design: (maximum length 75 feet / 22.86 m), with the primary choice being a flat bottom or with skeg to provide a less sensitive transition between waterborne and foil borne modes.
  • Crew and hand-operated grinder placement
  • Twin-skin soft main sail: Forms a fabric 3-D airfoil
  • Single-skin soft head sails
  • Rudder + stern foil
  • Foil wings, fairing and active trailing edge flaps: These are mounted to the standard cant arms; foils must be symmetrical with a maximum span 4 meters; flaps control lift; total weight is limited to about 1/3rd  the weight of the empty boat.
Example hull designs.  Source: AmericasCup.com
Example crew placement.  Source: AmericasCup.com
Airflow around a twin-skin main sail.  
Source, both graphics: AmericasCup.com
Foil wings generate lift.  Source, both graphics: AmericasCup.com
Luna Rossa showing cant arms, foil wings and fairing, and rudder and stern foil.  Source: AmericasCup.com

There are many AC75 videos available online, including many covering the exciting Prada America’s Cup World Series races in December 2020 and the Prada Cup races in January – February 2021.  These boats are so fast that the races are short and action packed.  I’ve listed several videos focusing more in boat technology below.

I hope you’ll enjoy a few of the AC75 videos and follow the America’s Cup Races.  It’s not like any yacht racing you’ve seen before.

For more information:

Videos:

Immersive Digital Multimedia Art Exhibitions are a New and Engaging Force in the Art World

Peter Lobner, 12 February 2021

In September 2019, my wife and I went to our first immersive, multimedia modern art exhibition; this one was in Riga, Latvia: From Monet to Kandinsky. Selected works from several artists, from galleries around the world, were digitally projected in very high resolution on a giant screen that must have been 25 to 30 feet tall and more than 120 feet long. Several rows of comfortable seating in this dark exhibition space gave everyone an unobstructed view of a portion of the screen. The particular scenes seamlessly migrated across the screen to our location along with occasional captions that briefly identified the artist and the piece.  Subtle background music erased almost all other background noises. This was a surprisingly engaging experience that was totally different than a visit to a conventional exhibit of artwork hanging on the walls in an art museum. With some images extending into my peripheral vision, I felt like my viewing perspective was from within some of the art pieces. Yes, I enjoyed it very much!

Source: Author’s photos

Since the 2019 Riga exhibition, I’ve noticed that immersive, multimedia art exhibitions are being hosted in many venues around the world.  Perhaps this is a trend.  If art museums collaborated to produce integrated digital art collections, then the immersive digital multimedia exhibition format could provide a whole new avenue for sharing great art worldwide through very engaging experiences for the public.

Here are a few immersive digital multimedia art exhibitions you might consider attending if you are in the neighborhood.  

Atelier des Lumières, Paris, France exhibitions

The multimedia exhibition, Monet, Renoir… Chagall, Journeys around the Mediterranean, was presented at Atelier des Lumières from 28 February 2020 to 17 January 2021.  A new venue for this exhibition has not been announced.

Source: Atelier des Lumières

From 3 April 2021 to 2 January 2022, the multimedia exhibition Gaudí, the Architect of the Imaginary, produced by the firm Cutback, will be at Atelier des Lumières.

“This immersive exhibition will pay tribute to the ingenious architect via his modernist buildings that have now been listed as UNESCO World Heritage sites. It takes visitors on a journey that embraces dreams and reality, ranging from the Parc Güell, the Casa Batlló, and the Casa Milà to the Sagrada Família.”

Gaudi exhibition. Source: Cutback via Atelier des Lumières
Gaudi exhibition. Source: Cutback via Atelier des Lumières

Also running from 3 April 2021 to 2 January 2022 at Atelier des Lumières, is the multimedia exhibition Dalí, the endless enigma, produced by Gianfranco Iannuzzi, Renato Gatto and Massimiliano Siccardi.

“Explore a thematic itinerary comprising surrealistic and metaphysical landscapes and will be immersed in the artist’s amazing and highly imaginative works. Exhibited around the world (the Gala-Salvador Dalí Foundation at Figueres, the Dalí Museum in Florida, the Reina Sofía Museum in Madrid, and MoMA in New York) these works, which can be interpreted on so many levels, will be brought together in the Atelier. Displayed and brought to life on the floors and ten-meter-high walls, visitors will be able to observe every detail of the brushstrokes, lines, and material effects.”

Dalí exhibition.  Source: Cutback via Atelier des Lumières
Dalí exhibition.  Source: Cutback via Atelier des Lumières

You’ll find the very interesting Atelier des Lumières website here: https://www.atelier-lumieres.com/en/home

The Dalí Museum, Clearwater, FL exhibition: van Gogh Alive

Now through 11 April 2021, the multimedia van Gogh Alive exhibit is at the Dalí Museum, which is the first art museum in North America to host this exhibit.  Their website is here: https://thedali.org/#

 “…more than 3,000 Van Gogh images, all scaled to enormous proportions through the use of high-definition projectors. This novel art installation is meant to give visitors the sensation of being immersed in Van Gogh’s paintings, an experience that’s enhanced by surround-sound with a compelling classical score.”

van Gogh exhibition. Source: Dalí Museum
van Gogh exhibition. Source: Dalí Museum

Newfields Museum, Indianapolis, IN exhibition: THE LUME Indianapolis

The digital exhibition called THE LUME Indianapolis, created by the Australian-based firm Grande Experiences, is coming in June 2021 to the 137 year old Newfields Museum.  The museum’s 30,000 ftexhibition space will digitally host Vincent van Gogh’s The Starry Nightand other masterpieces in an exhibition the museum describes as follows:

THE LUME Indianapolis will feature nearly 150 state-of-the-art digital projectors that can transform two-dimensional paintings into a three-dimensional world that guests can explore through all their senses. The exhibition featured in THE LUME will move far beyond the static nature of traditional art exhibitions. The LUME Indianapolis will be a new permanent attraction at Newfields, with the first year’s show featuring the breathtaking paintings of Vincent van Gogh. Friends and families of all ages are sure to enjoy the fascinating world of Van Gogh and his captivating art in a brand-new light.”

The Newfields Museum website is here: https://discovernewfields.org/lume

Artist’s rendering of Van Gogh’s The Starry Night, 
as seen in “The Lume” exhibition at the Newfields Museum. 
Source: Grande Experiences via Smithsonian

Mori Building Digital Art Museum, Tokyo, Japan

Unlike the preceding immersive digital multimedia art exhibitions, the Mori Building Digital Art Museum creates spectacular walk-through digital environments produced by teamLab Borderless.  The museum’s website offers the following invitation:

teamLab Borderless is a group of artworks that form one borderless world. Artworks move out of rooms, communicate with other works, influence, and sometimes intermingle with each other with no boundaries……Immerse your body in borderless art in this vast, complex, three-dimensional 10,000 square meter (108,000 square foot) world. Wander, explore with intention, discover, and create a new world with others.”

The exhibition’s website of here:  https://borderless.teamlab.art/#featured

Source: Mori
Source: Mori
Source: Mori

Phileas Fogg, Grab Your Hat! The World Sky Race® is Coming in 2023.

Peter Lobner, updated 26 October 2024

The World Air League is the organizer for a monumental airship race around the globe that will be held between September 2023 and May 2024.  The World Air League describes their mission as follows:

“The mission and vision of the World Air League are to promote the advancement of lighter-than-air aviation for a sustainable future. The World Air League is creating the World Sky Race as an epic challenge to inspire inventors to invent and adventurers to compete. For strategic impact and purpose, the World Air League in embedding the World Sky Race®  to be included in the global educational system to provide the world’s next-generation with a path to explore with their destination an alternate greener, cleaner future.”

You’ll find the World Sky Race® website here:  www.worldskyrace.com/

Source: World Air League

The upcoming World Sky Race® will launch in September 2023 when the competing airships cross the Prime Meridian heading east over Greenwich, London, and will end eight months later in Paris in May 2024, after the competitors have circumnavigated the globe. During the eight-month race, the airships will be flying over 130+ UNESCO World Heritage Sites and cities. Hopefully this flying caravan will inspire people worldwide to the green transportation opportunities represented by modern airships. The following map shows the proposed route. 

Source: World Air League

The following travel poster images provide inspiring views of some of the destinations that will be visited during the upcoming World Sky Race®.

Source: World Air League

The World Air League previously attempted to organize the inaugural World Sky Race® in 2010.  That race didn’t occur. Hopefully the planned 2023 – 2024 race will become a reality and will be a rousing success.

Update, 26 October 2024:

The World Sky Race didn’t occur as scheduled and new dates for the event haven’t been announced. However, viable airship candidates for around-the-world flight are being developed and, in 2024, two airship manufacturers announced their plans for around-the-world flights later in this decade. Maybe there will be a World Sky Race in the future.

For more information:

Videos: