Category Archives: Military technology

You Need to Know About Russia’s Main Directorate of Deep-Sea Research (GUGI)

Peter Lobner

The Main Directorate of Deep-Sea Research, also known as GUGI and Military Unit 40056, is an organizational structure within the Russian Ministry  of Defense that is separate from the Russian Navy.  The Head of GUGI is Vice-Admiral Aleksei Burilichev, Hero of Russia.

Source. Adapted from Ministry of Defense of the Russian Federation, http://eng.mil.ru/en/index.htm

Vice-Admiral Aleksei Burilichev at the commissioning of GUGI oceanographic research vessel Yantar. Source: http://eng.mil.ru/

GUGI is responsible for fielding specialized submarines, oceanographic research ships, undersea drones and autonomous vehicles, sensor systems, and other undersea systems.   Today, GUGI operates the world’s largest fleet of covert manned deep-sea vessels. In mid-2018, that fleet consisted of eight very specialized nuclear-powered submarines.

There are six nuclear-powered, deep-diving, small submarines (“nuclear deep-sea stations”), each of which is capable of working at great depth (thousands of meters) for long periods of time.  These subs are believed to have diver lockout facilities to deploy divers at shallower depths.

  • One Project 1851 / 18510 Nelma (aka X-Ray) sub delivered in 1986; Length: 44 m (144.4 ft.); displacement about 529 tons submerged. This is the first and smallest of the Russian special operations nuclear-powered submarines.
  • Two Project 18511 Halibut (aka Paltus) subs delivered between 1994 – 95; Length: 55 m (180.4 ft.); displacement about 730 tons submerged.
  • Three Project 1910 Kashalot (aka Uniform) subs delivered between 1986 – 1991, but only two are operational in 2018; Length: 69 m (226.4 ft.); displacement about 1,580 tons submerged.
  • One Project 09851 Losharik (aka NORSUB-5) sub delivered in about 2003; Length: 74 m (242.8 ft.); displacement about 2,100 tons submerged.

The trend clearly is toward larger, and certainly more capable deep diving special operations submarines.  The larger subs have a crew complement of 25 – 35.

Kashalot notional cross-section diagram. Source: adapted from militaryrussia.ru

Kashalot notional diagram showing deployed positioning thrusters, landing legs and tools for working on the bottom. Source: http://nvs.rpf.ru/nvs/forum

The Russian small special operations subs may have been created in response to the U.S. Navy’s NR-1 small, deep-diving nuclear-powered submarine, which entered service in 1969.  NR-1 had a length of 45 meters (147.7 ft.) and a displacement of about 400 tons submerged, making it roughly comparable to the Project 1851 / 18510 Nelma . NR-1 was retired in 2008, leaving the U.S. with no counterpart to the Russian fleet of small, nuclear-powered special operations subs.

GUGI operates two nuclear-powered “motherships” (PLA carriers) that can transport one of the smaller nuclear deep-sea stations to a distant site and provide support throughout the mission. The current two motherships started life as Delta III and Delta IV strategic ballistic missile submarines (SSBNs).  The original SSBN missile tubes were removed and the hulls were lengthened to create large midship special mission compartments with a docking facility on the bottom of the hull for one of the small, deep-diving submarines.  These motherships probably have a test depth of about 250 to 300 meters (820 to 984 feet).  They are believed to have diver lockout facilities for deploying divers.

General arrangement of a Russian mothership carrying a small special operations submarine.  Source:  http://gentleseas.blogspot.com/2015/08/russias-own-jimmy-carter-special-ops.html

Delta-IV mothership carrying Losharik.  Source: GlobalSecurity.org

The motherships also are believed capable of deploying and retrieving a variety of  autonomous underwater vehicles (AUVs), including the relatively large Harpsichord: Length: 6.5 m (21.3 ft.); Diameter 1 m (3.2 ft.); Weight: 3,700 kg (8,157 pounds).

Harpsichord-2R-PM. Source: http://vpk-news.ru/articles/30962

The following graphic shows a mothership carrying a small special operations sub  while operating with a Harpsichord AUV.

                       Source: https://russianmilitaryanalysis.wordpress.com/tag/9m730/

These nuclear submarines are operated by the 29th Special Submarine Squadron, which is based along with other GUGI vessels at Olenya Bay, in the Kola Peninsula on the coast of the Barents Sea.

Olenya Bay is near Murmansk.  Source: Google Maps

Russian naval facilities near Murmansk.  Source: https://commons.wikimedia.org

Mothership BS-136 Orenburg at Oleyna Bay.  Source: Source: http://www.air-defense.net/

The GUGI fleet provides deep ocean and Arctic operating capabilities that greatly exceed those of any other nation.  Potential missions include:

  • Conducting subsea surveys, mapping and sampling (i.e., to help validate Russia’s extended continental shelf claims in the Arctic; to map potential future targets such as seafloor cables)
  • Placing and/or retrieving items on the sea floor (i.e., retrieving military hardware, placing subsea power sources, power distribution systems and sonar arrays)
  • Maintaining military subsea equipment and systems
  • Conducting covert surveillance
  • Developing an operational capability to deploy the Poseidon strategic nuclear torpedo.
  • In time of war, attacking the subsea infrastructure of other nations in the open ocean or in the Arctic (i.e., cutting subsea internet cables, power cables or oil / gas pipelines)

Analysts at the firm Policy Exchange reported that the world’s undersea cable network comprises about 213 independent cable systems and 545,018 miles (877,121 km) of fiber-optic cable.  These undersea cable networks carry an estimated 97% of global communications and $10 trillion in daily financial transactions are transmitted by cables under the ocean.

Since about 2015, NATO has observed Russian vessels stepping up activities around undersea data cables in the North Atlantic. None are known to have been tapped or cut.  Selective attacks on this cable infrastructure could electronically isolate and severely damage the economy of individual countries or regions.  You’ll find a more detailed assessment on this matter in the 15 December 2017 BBC article, “Russia a ‘risk’ to undersea cables, Defence chief warns.”

http://www.bbc.com/news/uk-42362500

GUGI also is responsible for the development of the Poseidon (formerly known as Status-6 / Kanyon) strategic nuclear torpedo and the associated “carrier” submarines.

Poseidon, which was first revealed on Russian TV in November 2015,  is a large, nuclear-powered, autonomous underwater vehicle (AUV) that functionally is a giant, long-range torpedo.

 The Russian TV “reveal” of the Oceanic Multipurpose System Status-6 November 2015. Source: https://russianmilitaryanalysis.wordpress.com/tag/9m730/

It is capable of delivering a very large nuclear warhead (perhaps up to 100 MT) underwater to the immediate proximity of an enemy’s key economic and military facilities in coastal areas.  It is a weapon of unprecedented destructive power and it is not subject to any existing nuclear arms limitation treaties. However, its development would give Russia leverage in future nuclear arms limitation talks.

The immense physical size of the Poseidon strategic nuclear torpedo is evident in the size comparison chart below.

Source: http://www.hisutton.com/

The Bulava is the Russian submarine launched ballistic missile (SLBM) carried on Russia’s modern Borei-class SSBNs.  The UGST torpedo is representative of a typical torpedo launched from a 533 mm (21 inch) torpedo tube, which is found on the majority of submarines in the world.  An experimental submarine, the B-90 Sarov, appears to be the current testbed for the Poseidon strategic torpedo.  Russia is building other special submarines to carry several Poseidon strategic torpedoes.  One is believed to be the giant, highly modified Oscar II submarine K-139 Belgorod, which also will serve as a mothership for a small, special operations nuclear sub.  The other is the smaller Project 09851 submarine Khabarovsk, which appears to be purpose-built for carrying the Poseidon.

For more information on GUGI, Russian special operations submarines and other covert underwater projects, refer to the Covert Shores website created by naval analyst H. I. Sutton, which you’ll find at the following link:

http://www.hisutton.com/Analysis%20-%20Russian%20Status-6%20aka%20KANYON%20nuclear%20deterrence%20and%20Pr%2009851%20submarine.html

How to Build a Nuclear-Powered Aircraft Carrier

Peter Lobner

The latest U.S. nuclear-powered aircraft carrier, USS Gerald R. Ford (CVN-78), is the first of a new class (the Ford-class) of carriers that is intended to replace the already-retired USS Enterprise (CVN-65) and all 10 of the Nimitz-class carriers (CVN-68 to CVN-77) as they retire after 49 years of service between 2024 to 2058. Newport News Shipbuilding (NNS), a Division of Huntington Ingalls Industries, built all U.S. nuclear-powered aircraft carriers and is the prime contractor for the Ford-class carriers.

USS Gerald R. Ford (CVN-78) was authorized in fiscal year 2008. Actual construction took almost four years from keel laying on 13 November 2009 to launching on 11 October 2013. NNS uses a modular construction process to build major subassemblies in industrial areas adjacent to the drydock and then move each modular unit into the drydock when it is ready to be joined to the rapidly growing structure of the ship.

Overview of the NNS shipyard and CVN-78 in January 2012. Source: Newport News Shipbuilding / Chris OxleyCVN-78 under construction in the NNS drydock. Source: Newport News Shipbuilding

NNS created a short video of an animated 3-D model of CVN-78 showing the arrival and placement of major modules during the 4-year construction period. Highlights are shown in the screenshots below, and the link to the NNS animated video is here:

http://nns.huntingtoningalls.com/employees/pub/media/videos/cvn78_build.mp4

CVN-78 construction sequence highlights. Source: composite of 10 screenshots from a Newport News Shipbuilding video.

You also can watch a time-lapse video of the 4-year construction process from keel laying to christening here:

http://nns.huntingtoningalls.com/employees/pub/watch/cvn78-timelapse-4years.html

In this video, you’ll see major subassemblies, like the entire bow structure and the island superstructure moved into place with heavy-lift cranes.

CVN-78 lower bow unit being moved into place in 2012. Source: Newport News Shipbuilding / Ricky ThompsonCVN-78 “island” superstructure being moved into place. Source: Newport News Shipbuilding

After launching, another 3-1/2 years were required for outfitting and testing the ship dockside, loading the two Bechtel A1B reactors, and then conducting sea trials before the ship was accepted by the Navy and commissioned in July 2017.

CVN-78 underway. Source: U.S. Navy

Since commissioning, the Navy has been conducting extensive operational tests all ship systems. Of particular interest are new ElectroMAgnetic Launch System (EMALS) and the electro-mechanical Advanced Arresting Gear (AAG) system that replace the traditional steam catapults and hydraulic arresting gear on Nimitz-class CVNs. If all tests go well, USS Gerald R. Ford is expected to be ready for its first deployment in late 2019 or early 2020.

So, how much did it cost to deliver the USS Gerald R. Ford to the Navy? About $12.9 B in then-year (2008) dollars, according Congressional Research Service (CRS) report RS-20643, “Navy Ford (CVN-78) Class Aircraft Carrier Program: Background and Issues for Congress,” dated 9 August 2017. You can download this CRS report here:

https://fas.org/sgp/crs/weapons/RS20643.pdf

Milestones for the next two Ford-class carriers are summarized below:

  • CVN-79, USS John. F. Kennedy: Procured in FY 2013; scheduled for delivery in September 2024 at a cost of $11.4 B in then-year (2013) dollars.
  • CVN-80: USS Enterprise: To be procured in FY 2018; scheduled for delivery in September 2027 at a cost of about $13 B in then-year (2018) dollars.

To recapitalize the entire fleet of 10 Nimitz-class carriers will cost more than $130 B by the time the last Nimitz-class CVN, USS George H.W. Bush, is scheduled to retire in 2058 and be replaced by a new Ford-class CVN.

The current Congressional mandate is for an 11-ship nuclear-powered aircraft carrier fleet. On 15 December 2016, the Navy presented a new force structure assessment with a goal to increase the U.S. fleet size from the currently authorized limit of 308 vessels to 355 vessels. The Heritage Foundation’s 2017 Index of U.S. Military Strength reported that the Navy’s actual fleet size in early 2017 was 274 vessels, so the challenge of re-building to a 355 ship fleet is much bigger than it may sound, especially when you account for the many planned retirements of aging vessels in the following decades. The Navy’s Force Structure Assessment for a 355-ship fleet includes a requirement for 12 CVNs. The CRS provided their commentary on the 355-ship fleet plans in a report entitled, “Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress,” dated 22 September 2017. You can download that report here:

https://fas.org/sgp/crs/weapons/RL32665.pdf

As the world’s political situation continues to change, there may be reasons to change the type of aircraft carrier that is procured by the Navy. Rand Corporation provided the most recent assessment of this issue in their 2017 report entitled, “ Future Aircraft Carrier Options.” The Assessment Division of the Office of the Chief of Naval Operations sponsored this report. You can download this report at the following link:

https://www.rand.org/pubs/research_reports/RR2006.html

So, how many Ford-class aircraft carriers do you think will be built?

The Sad State of Affairs of the U.S. Polar Icebreaking Fleet, Revisited

Updated 4 January 2019

Peter Lobner

In my 9 September 2015 post, I reviewed the current state of the U.S. icebreaking fleet. My closing comments were:

“The U.S. is well behind the power curve for conducting operations in the Arctic that require icebreaker support.  Even with a well-funded new U.S. icebreaker construction program, it will take a decade before the first new ship is ready for service, and by that time, it probably will be taking the place of Polar Star, which will be retiring or entering a more comprehensive refurbishment program.”

You can read my 2015 post here:

https://lynceans.org/all-posts/the-sad-state-of-affairs-of-the-u-s-icebreaking-fleet-and-implications-for-future-u-s-arctic-operations/

Alternatives for modernizing existing U.S. polar icebreakers to extend their operating lives and options for procuring new polar icebreakers were described in the Congressional Research Service report, “Coast Guard Polar icebreaker Modernization: Background and Issues for Congress,” dated 2 September 2015. You can download that report here:

https://news.usni.org/wp-content/uploads/2015/09/RL34391.pdf

While the Coast Guard Authorization Act of 2015 made funds available for “pre-acquisition” activities for a new polar icebreaker, little action has been taken to start procuring new polar icebreakers for the USCG. This Act required the Secretary of the Department of Homeland Security (DHS) to engage the National Academies (ironically, not the Coast Guard) in “an assessment of alternative strategies for minimizing the costs incurred by the federal government in procuring and operating heavy polar icebreakers.”

The DHS and USCG issued the “Coast Guard Mission Needs Statement,” on 8 January 2016 as a report to Congress. This report briefly addressed polar ice operations in Section 11 and in Appendix B acknowledged two key roles for polar icebreakers:

  • The USCG provides surface access to polar regions for all Department of Defense (DoD) activities and logistical support for remote operating facilities.
  • The USCG supports the National Science Foundation’s research activities in Antarctica by providing heavy icebreaking support of the annual re-supply missions to McMurdo Sound. Additionally, USCG supports the annual NSF scientific mission in the Arctic.

This report to Congress failed to identify deficiencies in the USCG polar icebreaker “fleet” relative to these defined missions (i.e., the USCG has only one operational, aging heavy polar icebreaker) and was silent on the matter of procuring new polar icebreakers. You can download the 2016 “Coast Guard Mission Needs Statement” here:

https://www.dhs.gov/sites/default/files/publications/United%20States%20Coast%20Guard%20-%20Mission%20Needs%20Statement%20FY%202015.pdf

On 22 February 2017, the USCG made some progress when it awarded five, one-year, firm fixed-price contracts with a combined value of $20 M for heavy polar icebreaker design studies and analysis. The USCG reported that, “The heavy polar icebreaker integrated program office, staffed by Coast Guard and U.S. Navy personnel, will use the results of the studies to refine and validate the draft heavy polar icebreaker system specifications.” The USCG press release regarding this modest design study procurement is here:

http://mariners.coastguard.dodlive.mil/2017/02/23/2222017-five-firm-fixed-price-contracts-awarded-for-heavy-polar-icebreaker-design-studies-analysis/

The National Academies finally issued their assessment of U.S. polar icebreaker needs in a letter report to the Secretary of Homeland Security dated 11 July 2017. The report, entitled, “Acquisition and Operation of Polar Icebreakers: Fulfilling the Nation’s Needs.” offered the following findings and recommendations:

  1. Finding: The United States has insufficient assets to protect its interests, implement U.S. policy, execute its laws, and meet its obligations in the Arctic and Antarctic because it lacks adequate icebreaking capability.
  2. Recommendation: The United States Congress should fund the construction of four polar icebreakers of common design that would be owned and operated by the United States Coast Guard (USCG).
  3. Recommendation: USCG should follow an acquisition strategy that includes block buy contracting with a fixed price incentive fee contract and take other measures to ensure best value for investment of public funds.
  4. Finding: In developing its independent concept design and cost estimates, the committee determined that the cost estimated by USCG for the heavy icebreakers are reasonable (average cost per ship of about $791 million for a 4-ship buy).
  5. Finding: Operating costs of new polar icebreakers are expected to be lower than those of the vessels they replace.
  6. Recommendation: USCG should ensure that the common polar icebreaker design is science ready and that one of the ships has full science capability. (This means that the design includes critical features and structures that cannot be cost-effectively retrofit after construction).
  7. Finding: The nation is at risk of losing its heavy icebreaking capability – experiencing a critical capacity gap – as the Polar Star approaches the end of its extended service life, currently estimated to be 3 to 7 years (i.e., sometime between 2020 and 2024).
  8. Recommendation: USCG should keep the Polar Star operational by implementing an enhanced maintenance program (EMP) until at least two new polar icebreakers are commissioned.

You can download this National Academies letter report here:

https://www.nap.edu/catalog/24834/acquisition-and-operation-of-polar-icebreakers-fulfilling-the-nations-needs

There has been a long history of studies that have shown the need for additional U.S. polar icebreakers. This National Academies letter report provides a clear message to DHS and Congress that action is needed now.

In the meantime, in Russia:

To help put the call to action to modernize and expand the U.S. polar icebreaking capability in perspective, let’s take a look at what’s happening in Russia.

The Russian state-owned nuclear icebreaker fleet operator, Rosatomflot, is scheduled to commission the world’s largest nuclear-powered icebreaker in 2019. The Arktika is the first of the new Project 22220 LK-60Ya class of nuclear-powered polar icebreakers being built to replace Russia’s existing, aging fleet of nuclear icebreakers. The LK-60Ya is a dual-draught design that enables these ships to operate as heavy polar icebreakers in Arctic waters and also operate in the shallower mouths of polar rivers. Vessel displacement is about 37,000 tons (33,540 tonnes) with water ballast and about 28,050 tons (25,450 tonnes) without water ballast. When ballasted, LK-60Ya icebreakers will be able to operate in Arctic ice of any thickness up to 4.5 meters (15 feet).

The principal task for the new LK-60Ya icebreakers will be to clear passages for ship traffic on the Northern Sea route, which runs along the Russian Arctic coast from the Kara Sea to the Bering Strait. The second and third ships in this class, Sibir and Ural, are under construction at the Baltic Shipyard in St. Petersburg and are expected to enter service in 2020 and 2021, respectively.

Arktika (on right), Akademik Lomonosov floating nuclear power plant (center), and Sibir (on left) dockside at Baltic Shipyard, St. Petersburg, Russia, October 2017: Source: Charles Diggers / maritime-executive.com

In June 2016, Russia launched the first of four diesel-electric powered 6,000 ton Project 21180 icebreakers at the Admiralty Shipyard in St. Petersburg. The Ilya Muromets, which is expected to be delivered in November 2017, will be the Russian Navy’s first new military icebreaker in about 50 years. It is designed to be capable of breaking ice with a thickness up to 1 meter (3.3 feet). The Project 21180 icebreaker’s primary mission is to provide icebreaking services for the Russian naval forces deployed in the Arctic region and the Far East. The U.S. has no counterpart to this class of Arctic vessel.

Project 21180 military icebreaker Ilya Muromets. Source: The Baltic Post

You’ll find more information on Russia’s Project 21180-class icebreakers here:

http://www.naval-technology.com/projects/project-21180-class-icebreakers/

Russia’s 7,000 – 8,500 ton diesel-electric Project 23550 military icebreaking patrol vessels (corvettes) will be armed combatant vessels capable of breaking ice with a thickness up to 1.7 meters (5.6 feet). The keel for the lead ship, Ivan Papanin, was laid down at the Admiralty Shipyard in St. Petersburg on 19 April 2017. Construction time is expected to be about 36 month, with Ivan Papanin being commissioned in 2020. The second ship in this class should enter service about one year later. Both corvettes are expected to be armed with a mid-size naval gun (76 mm to 100 mm have been reported), containerized cruise missiles, and an anti-submarine capable helicopter (i.e., Kamov Ka-27 type). The U.S. has no counterpart to this class of Arctic vessel.

Project 23550 icebreaking patrol vessel. Source: naval-technology.com

You’ll find more information on Russia’s Project 23550-class icebreaking patrol vessels here:

http://www.naval-technology.com/projects/ivan-papanin-project-23550-class-arctic-patrol-vessels/

In conclusion:

It appears to me that Russia and the U.S. have very different visions for how they will conduct and support future civilian and military operations that require surface access in the Arctic region. The Russians currently have a strong polar icebreaking capability to support its plans for Arctic development and operation, and that capability is being modernized with a new fleet of the world’s largest nuclear-powered icebreakers. In addition, two smaller icebreaking vessel classes, including an icebreaking combatant vessel, soon will be deployed to support Russia’s military in the Arctic and Far East.

In comparison, the U.S. polar icebreaking capability continues to hang by a thread (i.e., the Polar Star) and our nation has to decide if it is even going to show up for polar icebreaking duty in the Arctic in the near future. The U.S. also is a no-show in the area of dedicated military icebreakers, including Arctic-capable armed combatant surface vessels.

Where do you think this Arctic imbalance is headed?

Update: 4 January 2019

In September 2018, the Coast Guard renamed its New Icebreaker Program ‘Polar Security Cutter.’  The hull designation will be WMSP. W is the standard prefix for Coast Guard vessels, and MSP stands for Maritime Security-Polar.  However, the revised designation does not alter how the vessel is funded.

10 December 2018 report by the Congressional Research Service, “Coast Guard Polar Security Cutter (Polar Icebreaker) Program: Background and Issues for Congress,” which you’ll find at the following link: https://fas.org/sgp/crs/weapons/RL34391.pdf

With the heavy polar icebreaker Polar Star (WAGB-10) used exclusively to support Antarctic operations, the medium-size cutter Healy (WAGB-20) is the only Coast Guard polar icebreaker serving the Arctic region. Healy was built in 2000 primarily as an Arctic research vessel for the national Academy of Sciences.

“HEALY is designed to conduct a wide range of research activities, providing more than 4,200 square feet of scientific laboratory space, numerous electronic sensor systems, oceanographic winches, and accommodations for up to 50 scientists. HEALY is designed to break 4.5 feet of ice continuously at three knots and can operate in temperatures as low as -50 degrees F. The science community provided invaluable input on lab layouts and science capabilities during design and construction of the ship. At a time when scientific interest in the Arctic Ocean basin is intensifying, HEALY substantially enhances the United States Arctic research capability.

As a Coast Guard cutter, HEALY is also a capable platform for supporting other potential missions in the polar regions, including logistics, search and rescue, ship escort, environmental protection, and enforcement of laws and treaties.”

Coast Guard cutter Healy: Source: U.S. Coast Guard Pacific Area / Petty Officer 2nd Class Matthew Masaschi

Senator McCain’s White Paper Provides an Insightful Look at Current U.S. Force Readiness and Recommendations for Rebuilding

Peter Lobner

On 18 January 2017, Senator John McCain, Chairman, Senate Armed Services Committee (SASC), issued a white paper entitled, “Restoring American Power,” laying out SASC’s defense budget recommendations for the next five years; FY 2018 – 2022.

SASC white paper  Source: SASC

You can download this white paper at the following link:

http://www.mccain.senate.gov/public/_cache/files/25bff0ec-481e-466a-843f-68ba5619e6d8/restoring-american-power-7.pdf

The white paper starts by describing how the Budget Control Act of 2011 failed to meet its intended goal (reducing the national debt) and led to a long series of budget compromises between Congress and Department of Defense (DoD). These budget compromises, coupled with other factors (i.e., sustained military engagements in the Middle East), have significantly reduced the capacity and readiness of all four branches of the U.S. military. From this low point, the SASC white paper defines a roadmap for starting to rebuild a more balanced military.

If you have read my posts on the Navy’s Littoral Combat Ship (18 December 2016) and the Columbia Class SSBN (13 January 2017), then you should be familiar with issues related to two of the programs addressed in the SASC white paper.

For a detailed assessment of the white paper, see Jerry Hendrix’s post, “McCain’s Excellent White Paper: Smaller Carriers, High-Low Weapons Mix, Frigates and Cheap Fighters,” on the Breaking Defense website at the following link:

http://breakingdefense.com/2017/01/mccains-excellent-white-paper-smaller-carriers-high-low-weapons-mix-frigates-cheap-fighters/?utm_source=hs_email&utm_medium=email&utm_content=40837839&_hsenc=p2ANqtz-_SDDXYdgbQ2DPZpnkldur5pvqhppQ6EHccfzmiCqtrpPP0osIQ-rE0i5MEzoIucB8KviNiomciAykn8PnQ6AxRySecJQ&_hsmi=40837839

The Mysterious Case of the Vanishing Electronics, and More

Peter Lobner

Announced on 29 January 2013, DARPA is conducting an intriguing program known as VAPR:

“The Vanishing Programmable Resources (VAPR) program seeks electronic systems capable of physically disappearing in a controlled, triggerable manner. These transient electronics should have performance comparable to commercial-off-the-shelf electronics, but with limited device persistence that can be programmed, adjusted in real-time, triggered, and/or be sensitive to the deployment environment.

VAPR aims to enable transient electronics as a deployable technology. To achieve this goal, researchers are pursuing new concepts and capabilities to enable the materials, components, integration and manufacturing that could together realize this new class of electronics.”

VAPR has been referred to as “Snapchat for hardware”. There’s more information on the VAPR program on the DARPA website at the following link:

http://www.darpa.mil/program/vanishing-programmable-resources

Here are a few of the announced results of the VAPR program.

Disintegrating electronics

In December 2013, DARPA awarded a $2.5 million VAPR contract to the Honeywell Aerospace Microelectronics & Precision Sensors segment in Plymouth, MN for transient electronics.

In February 2014, IBM was awarded a $3.4 million VAPR contract to develop a radio-frequency based trigger to shatter a thin glass coating: “IBM plans is to utilize the property of strained glass substrates to shatter as the driving force to reduce attached CMOS chips into …. powder.” Read more at the following link:

http://www.zdnet.com/article/ibm-lands-deal-to-make-darpas-self-destructing-vapr-ware/

Also in February 2014, DARPA awarded a $2.1 million VAPR contract to PARC, a Xerox company. In September 2015, PARC demonstrated an electronic chip built on “strained” Corning Gorilla Glass that will shatter within 10 seconds when remotely triggered. The “strained” glass is susceptible to heat. On command, a resistor heats the glass, causing it to shatter and destroy the embedded electronics. This transience technology is referred to as: Disintegration Upon Stress-release Trigger, or DUST. Read more on PARC’s demonstration and see a short video at the following link:

http://spectrum.ieee.org/tech-talk/computing/hardware/us-militarys-chip-self-destructs-on-command

Disintegrating power source

In December 2013, USA Today reported that DARPA awarded a $4.7 million VAPR contract to SRI International, “to develop a transient power supply that, when triggered, becomes unobservable to the human eye.” The power source is the SPECTRE (Stressed Pillar-Engineered CMOS Technology Readied for Evanescence) silicon-air battery. Details are at the following link:

http://www.usatoday.com/story/nation/2013/12/27/vanishing-silicon-air-battery-darpa/4222327/

On 12 August 2016, the website Science Friday reported that Iowa State scientists have successfully developed a transient lithium-ion battery:

“They’ve developed the first self-destructing, lithium-ion battery capable of delivering 2.5 volts—enough to power a desktop calculator for about 15 minutes. The battery’s polyvinyl alcohol-based polymer casing dissolves in 30 minutes when dropped in water, and its nanoparticles disperse. “

You can read the complete post at:

http://www.sciencefriday.com/segments/this-battery-will-self-destruct-in-30-minutes/

ICARUS (Inbound, Controlled, Air-Releasable, Unrecoverable Systems)

On 9 October 2015, DARPA issued “a call for disappearing delivery vehicles,” which you can read at the following link:

http://www.darpa.mil/news-events/2015-10-09

In this announcement DARPA stated:

“Our partners in the VAPR program are developing a lot of structurally sound transient materials whose mechanical properties have exceeded our expectations,” said VAPR and ICARUS program manager Troy Olsson. Among the most eye-widening of these ephemeral materials so far have been small polymer panels that sublimate directly from a solid phase to a gas phase, and electronics-bearing glass strips with high-stress inner anatomies that can be readily triggered to shatter into ultra-fine particles after use. A goal of the VAPR program is electronics made of materials that can be made to vanish if they get left behind after battle, to prevent their retrieval by adversaries.”

With the progress made in VAPR, it became plausible to imagine building larger, more robust structures using these materials for an even wider array of applications. And that led to the question, ‘What sorts of things would be even more useful if they disappeared right after we used them?’”

This is how DARPA conceived the ICARUS single-use drone program described in October 2015 in Broad Area Announcement DARPA-BAA-16-03. The goal of this $8 million, 26-month DARPA program is to develop small drones with the following attributes

  • One-way, autonomous mission
  • 3 meter (9.8 feet) maximum span
  • Disintegrate in 4-hours after payload delivery, or within 30 minutes of exposure to sunlight
  • Fly a lateral distance of 150 km (93 miles) when released from an altitude of 35,000 feet (6.6 miles)
  • Navigate to and deliver various payloads up to 3 pounds (1.36 kg) within 10 meters (31 feet) of a GPS-designated target

The ICARUS mission profile is shown below.

ICARUS mission profileICARUS mission. Source: DARPA-BAA-16-03

More information on ICARUS is available on the DARPA website at:

http://www.darpa.mil/program/inbound-controlled-air-reasonable-unrecoverable-systems

On 14 June 2016, Military & Aerospace reported that two ICARUS contracts had been awarded:

  • PARC (Palo Alto, CA): $2.3 million Phase 1 + $1.9 million Phase 2 option
  • DZYNE Technologies, Inc. (Fairfax, VA): $2.9 million Phase 1 + $3.2 million Phase 2 option

You can watch a short video describing the ICARUS competition at the following link:

https://www.youtube.com/watch?v=i2U1UTDqZbQ

The firm Otherlab (https://otherlab.com) has been involved with several DARPA projects in recent years. While I haven’t seen a DARPA announcement that Otherlab is a funded ICARUS contractor, a recent post by April Glaser on the recode website indicates that the Otherlab has developed a one-way, cardboard glider capable of delivering a small cargo to a precise target.

“When transporting vaccines or other medical supplies, the more you can pack onto the drone, the more relief you can supply,” said Star Simpson, an aeronautics research engineer at Otherlab, the group that’s building the new paper drone. If you don’t haul batteries for a return trip, you can pack more onto the drone, says Simpson.

The autonomous disposable paper drone flies like a glider, meaning it has no motor on board. It does have a small computer, as well as sensors that are programed to adjust the aircraft’s control surfaces, like on its wings or rudder, that determine where the aircraft will travel and land.”

 Otherlab_SkyMachines_APSARA.0Sky machines. Source: Otherworld

Read the complete post on the Otherlab glider on the recode website at the following link:

http://www.recode.net/2017/1/12/14245816/disposable-drones-paper-darpa-save-your-life-otherlab

The future

The general utility of vanishing electronics, power sources and delivery vehicles is clear in the context of military applications. It will be interesting to watch the future development and deployment of integrated systems using these vanishing resources.

The use of autonomous, air-releasable, one-way delivery vehicles (vanishing or not) also should have civilian applications for special situations such as emergency response in hazardous or inaccessible areas.

Columbia – The Future of the U.S. FBM Submarine Fleet

Peter Lobner

On 14 December, 2016, the Secretary of the Navy, Ray Mabus, announced that the new class of U.S. fleet ballistic missile (FBM) submarines will be known as the Columbia-class, named after the lead ship, USS Columbia, SSBN-826 and the District of Columbia. Formerly, this submarine class was known simply as the “Ohio Replacement Program”.

USS ColumbiaColumbia-class SSBN. Source: U.S. Navy

There will be 12 Columbia-class SSBNs replacing 14 Ohio-class SSBNs. The Navy has designated this as its top priority program. All of the Columbia-class SSBNs will be built at the General Dynamics Electric Boat shipyard in Groton, CT.

Background – Ohio-class SSBNs

Ohio-class SSBNs make up the current fleet of U.S. FBM submarines, all of which were delivered to the Navy between 1981 and 1997. Here are some key points on the Ohio-class SSBNs:

  • Electric Boat’s FY89 original contract for construction of the lead ship, USS Ohio, was for about $1.1 billion. In 1996, the Navy estimated that constructing the original fleet of 18 Ohio-class SSBNs and outfitting them with the Trident weapons system cost $34.8 billion. That’s an average cost of about $1.9 billion per sub.
  • On average, each SSBN spend 77 days at sea, followed by 35 days in-port for maintenance.
  • Each crew consists of about 155 sailors.
  • The Ohio-class SSBNs will reach the ends of their service lives at a rate of about one per year between 2029 and 2040.

The Ohio SSBN fleet currently is carrying about 50% of the total U.S. active inventory of strategic nuclear warheads on Trident II submarine launched ballistic missiles (SLBMs). In 2018, when the New START nuclear force reduction treaty is fully implemented, the Ohio SSBN fleet will be carrying approximately 70% of that active inventory, increasing the strategic importance of the U.S. SSBN fleet.

It is notable that the Trident II missile initial operating capability (IOC) occurred in March 1990. The Trident D5LE (life-extension) version is expected to remain in service until 2042.

Columbia basic design features

Features of the new Columbia-class SSBN include:

  • 42 year ship operational life
  • Life-of-the-ship reactor core (no refueling)
  • 16 missile tubes vs. 24 on the Ohio-class
  • 43’ (13.1 m) beam vs. 42’ (13 m) on the Ohio-class
  • 560’ (170.7 m) long, same as Ohio-class
  • Slightly higher displacement (likely > 20,000 tons) than the Ohio class
  • Electric drive vs. mechanical drive on the Ohio-class
  • X-stern planes vs. cruciform stern planes on the Ohio-class
  • Accommodations for 155 sailors, same as Ohio

Design collaboration with the UK

The U.S. Navy and the UK’s Royal Navy are collaborating on design features that will be common between the Columbia-class and the UK’s Dreadnought-class SSBNs (formerly named “Successor” class). These features include:

  • Common Missile Compartment (CMC)
  • Common SLBM fire control system

The CMC is being designed as a structural “quad-pack”, with integrated missile tubes and submarine hull section. Each tube measures 86” (2.18 m) in diameter and 36’ (10.97 m) in length and can accommodate a Trident II SLBM, which is the type currently deployed on both the U.S. and UK FBM submarine fleets. In October 2016, General Dynamics received a $101.3 million contract to build the first set of CMCs.

CMC 4-packCMC “quad-pack.” Source: General Dynamics via U.S. Navy

The “Submarine Shaftless Drive” (SDD) concept that the UK is believed to be planning for their Dreadnought SSBN has been examined by the U.S. Navy, but there is no information on the choice of propulsor for the Columbia-class SSBN.

Design & construction cost

In the early 2000s, the Navy kicked off their future SSBN program with a “Material Solution Analysis” phase that included defining initial capabilities and development strategies, analyzing alternatives, and preparing cost estimates. The “Milestone A” decision point reached in 2011 allowed the program to move into the “Technology Maturation & Risk Reduction” phase, which focused on refining capability definitions and developing various strategies and plans needed for later phases. Low-rate initial production and testing of certain subsystems also is permitted in this phase. Work in these two “pre-acquisition” phases is funded from the Navy’s research & development (R&D) budget.

On 4 January 2017, the Navy announced that the Columbia-class submarine program passed its “Milestone B” decision review. The Acquisition Decision Memorandum (ADM) was signed by the Navy’s acquisition chief Frank Kendall. This means that the program legally can move into the Engineering & Manufacturing Development Phase, which is the first of two systems acquisition phases funded from the Navy’s shipbuilding budget. Detailed design is performed in this phase. In parallel, certain continuing technology development / risk reduction tasks are funded from the Navy’s R&D budget.

The Navy’s proposed FY2017 budget for the Columbia SSBN program includes $773.1 million in the shipbuilding budget for the first boat in the class, and $1,091.1 million in the R&D budget.

The total budget for the Columbia SSBN program is a bit elusive. In terms of 2010 dollars, the Navy had estimated that lead ship would cost $10.4 billion ($4.2 billion for detailed design and non-recurring engineering work, plus $6.2 billion for construction) and the 11 follow-on SSBNs will cost $5.2 billion each. Based on these cost estimates, construction of the new fleet of 12 SSBNs would cost $67.6 billion in 2010 dollars. Frank Kendall’s ADM provided a cost estimate in terms of 2017 dollars in which the detailed design and non-recurring engineering work was amortized across the fleet of 12 SSBNs. In this case, the “Average Procurement Unit Cost” was $8 billion per SSBN. The total program cost is expected to be about $100 billion in 2017 dollars for a fleet of 12 SSBNs. There’s quite a bit if inflation between the 2010 estimate and new 2017 estimate, and that doesn’t account for future inflation during the planned construction program that won’t start until 2021 and is expected to continue at a rate of one SSBN authorized per year.

The UK is contributing financially to common portions of the Columbia SSBN program.  I have not yet found a source for details on the UK’s contributions and how they add to the estimate for total program cost.

Operation & support (O&S) cost

The estimated average O&S cost target of each Columbia-class SSBN is $110 million per year in constant FY2010 dollars. For the fleet of 12 SSBNs, that puts the annual total O&S cost at $1.32 billion in constant FY2010 dollars.

Columbia schedule

An updated schedule for Columbia-class SSBN program was not included in the recent Navy announcements. Previously, the Navy identified the following milestones for the lead ship:

  • FY2017: Start advance procurement for lead ship
  • FY2021: Milestone C decision, which will enable the program to move into the Production and Deployment Phase and start construction of the lead ship
  • 2027: Deliver lead ship to the Navy
  • 2031: Lead ship ready to conduct 1st strategic deterrence patrol

Keeping the Columbia-class SSBN construction program on schedule is important to the nation’s, strategic deterrence capability. The first Ohio-class SSBNs are expected start retiring in 2029, two years before the first Columbia-class SSBN is delivered to the fleet. The net result of this poor timing will be a 6 – 7 year decline in the number of U.S. SSBNs from the current level of 14 SSBNs to 10 SSBNs in about 2032. The SSBN fleet will remain at this level for almost a decade while the last Ohio-class SSBNs are retiring and are being replaced one-for-one by new Columbia-class SSBNs. Finally, the U.S. SSBN fleet will reach its authorized level of 12 Columbia-class SSBNs in about 2042. This is about the same time when the Trident D5LE SLBMs arming the entire Columbia-class fleet will need to be replaced by a modern SLBM.

You can see the fleet size projections for all classes of Navy submarines in the following chart. The SSBN fleet is represented by the middle trend line.

Submarines-30-year-plan-2017 copy 2 Source: U.S. Navy 30-year Submarine Shipbuilding Plan 2017

Based on the Navy’s recent poor performance in other major new shipbuilding programs (Ford-class aircraft carrier, Nimitz-class destroyer, Littoral Combat Ship), their ability to meet the projected delivery schedule for the Columbia-class SSBN’s must be regarded with some skepticism. However, the Navy’s Virginia-class attack submarine (SSN) construction program has been performing very well, with some new SSNs being delivered ahead of schedule and below budget. Hopefully, the submarine community can maintain the good record of the Virginia-class SSNs program and deliver a similarly successful, on-time Columbia-class SSBN program.

Additional resources:

For more information, refer to the 25 October 2016 report by the Congressional Research Service, “Navy Columbia Class (Ohio Replacement) Ballistic Missile Submarine (SSBN[X]) Program: Background and Issues for Congress,” which you can download at the following link:

https://fas.org/sgp/crs/weapons/R41129.pdf

You can read the Navy’s, “Report to Congress on the Annual Long-Range Plan for Construction of Naval Vessels for Fiscal Year 2017,” at the following link:

https://news.usni.org/2016/07/12/20627

 

The Navy’s Troubled Littoral Combat Ship (LCS) Program is Delivering a Costly, Unreliable, Marginal Weapons System

Peter Lobner

Updated 9 January 2020

The LCS program consists of two different, but operationally comparable ship designs:

  • LCS-1 Freedom-class monohull built by Marinette Marine
  • LCS-2 Independence-class trimaran built by Austal USA.

These relatively small surface combatants have full load displacements in the 3,400 – 3,900 ton range, making them smaller than most destroyer and frigate-class ships in the world’s navies.

lcs-1-and-lcs-2-web120502-n-zz999-009LCS-2 in foreground & LCS-1 in background. Source: U.S. NavyLCS-2-Indepenence-LCS-1-Freedom-7136872711_c3ddf9d43bLCS-1 on left & LCS-2 on right. Source: U.S. Navy

Originally LCS was conceived as a fleet of 52 small, fast, multi-mission ships designed to fight in littoral (shallow, coastal) waters, with roll-on / roll-off mission packages intended to give these ships unprecedented operational flexibility. In concept, it was expected that mission module changes could be conducted in any port in a matter of hours. In a 2010 Department of Defense (DoD) Selected Acquisition Report, the primary missions for the LCS were described as:

“…littoral surface warfare operations emphasizing prosecution of small boats, mine warfare, and littoral anti-submarine warfare. Its high speed and ability to operate at economical loiter speeds will enable fast and calculated response to small boat threats, mine laying and quiet diesel submarines. LCS employment of networked sensors for Intelligence, Surveillance, and Reconnaissance (ISR) in support of Special Operations Forces (SOF) will directly enhance littoral mobility. Its shallow draft will allow easier excursions into shallower areas for both mine countermeasures and small boat prosecution. Using LCS against these asymmetrical threats will enable Joint Commanders to concentrate multi-mission combatants on primary missions such as precision strike, battle group escort and theater air defense.”

Both competing firms met a Congressionally-mandated cost target of $460 million per unit, and, in December 2010, Congress gave the Navy authority to split the procurement rather than declare a single winner. Another unique aspect of the LCS program was that the Defense Acquisition Board split the procurement further into the following two separate and distinct programs with separate reporting requirements:

  • The two “Seaframe” programs (for the two basic ship designs, LCS-1 and LCS-2)
  • The Mission Module programs (for the different mission modules needed to enable an LCS seaframe to perform specific missions)

When the end product is intended to be an integrated combatant vessel, you don’t need to be a systems analyst to know that trouble is brewing in the interfaces between the seaframes and the mission modules somewhere along the critical path to LCS deployment.

There are three LCS mission modules:

  • Surface warfare (SUW)
  • Anti-submarine (ASW)
  • Mine countermeasures (MCM)

These mission modules are described briefly below:

Surface warfare (SUW)

Each LCS is lightly armed since its design basis surface threat is an individual small, armed boat or a swarm of such boats. The basic anti-surface armament on an LCS seaframe includes a single 57 mm main gun in a bow turret and everal small (.50 cal) machine guns.  The SUW module adds twin 30mm Bushmaster cannons, an aviation unit, a maritime security module (small boats), and relatively short-range surface-to-surface missiles.

Each LCS has a hanger bay for its embarked aviation unit, which is comprised of one manned MH-60R Sea Hawk helicopter and one MQ-8B Fire Scout unmanned aerial vehicle (UAV, a small helicopter). As part of the SUW module, these aviation assets are intended to be used to identify, track, and help prosecute surface targets.

That original short-range missile collaboration with the Army failed when the Army withdrew from the program. As of December 2016, the Navy is continuing to conduct operational tests of a different Army short-range missile, the Longbow Hellfire, to fill the gap in the SUW module and improve the LCS’s capability to defend against fast inshore attack craft.

In addition to the elements of the SUW module described above, each LCS has a RIM-116 Rolling Airframe Missile (RAM) system or a SeaRAM system intended primarily for anti-air point defense (range 5 – 6 miles) against cruise missiles. A modified version of the RAM has limited capabilities for use against helicopters and nearby small surface targets.

In 2015, the Navy redefined the first increment of the LCS SUW capability as comprising the Navy’s Visit, Board, Search and Seizure (VBSS) teams. This limited “surface warfare” function is comparable to the mission of a Coast Guard cutter.

While the LCS was not originally designed to have a long-range (over the horizon) strike capability, the Navy is seeking to remedy this oversight and is operationally testing two existing missile systems to determine their suitability for installation on the LCS fleet. These missiles are the Boeing Harpoon and the Norwegian Konigsberg Naval Strike Missile (NSM). Both can be employed against sea and land targets.

Anti-submarine (ASW)

The LCS does not yet have an operational anti-submarine warfare (ASW) capability because of ongoing delays in developing this mission module.

The sonar suite is comprised of a continuously active variable depth sonar, a multi-function towed array sonar, and a torpedo defense sonar. For the ASW mission, the MH-60R Sea Hawk helicopter will be equipped with sonobuoys, dipping sonar and torpedoes for prosecuting submarines. The MQ-8B Fire Scout UAV also can support the ASW mission.

Use of these ASW mission elements is shown in the following diagram (click on the graphic to enlarge):

asw_lcsSource: U.S. Navy

In 2015, the Navy asked for significant weight reduction in the 105 ton ASW module.

Originally, initial operational capability (IOC) was expected to be 2016. It appears that the ASW mission package is on track for an IOC in late 2018, after completing development testing and initial operational test & evaluation.

Mine Countermeasures (MCM)

The LCS does not yet have an operational mine countermeasures capability. The original complex deployment plan included three different unmanned vehicles that were to be deployed in increments.

  • Lockheed Martin Remote Multi-mission Vehicle (RMMV) would tow a sonar system for conducting “volume searches” for mines
  • Textron Common Unmanned Surface Vehicle (CUSV) would tow minesweeping hardware.
  • General Dynamics Knifefish unmanned underwater vehicle would hunt for buried mines

For the MCM mission, the MH-60R Sea Hawk helicopter will be equipped with an airborne laser mine detection system and will be capable of operating an airborne mine neutralization system. The MQ-8B Fire Scout UAV also supports the MCM mission.

Use of these MCM mission elements is shown in the following diagram (click on the graphic to enlarge):

lcs_2013_draft_MCM-624x706Source: U.S. Navy

Original IOC was expected to be 2014. The unreliable RMMV was cancelled in 2015, leaving the Navy still trying in late 2016 to define how an LCS will perform “volume searches.” CUSV and Knifefish development are in progress.

It appears the Navy is not planning to conduct initial operational test & evaluation of a complete MCM module before late 2019 or 2020.

By January 2012, the Navy acknowledged that mission module change-out could take days or weeks instead of hours. Therefore, each LCS will be assigned a single mission, making module changes a rare occurrence. So much for operational flexibility.

LCS has become the poster child for a major Navy ship acquisition program that has gone terribly wrong.

  • The mission statement for the LCS is still evolving, in spite of the fact that 26 already have been ordered.
  • There has been significant per-unit cost growth, which is actually difficult to calculate because of the separate programmatic costs of the seaframe and the mission modules.
    • FY 2009 budget documents showed that the cost of the two lead ships had risen to $637 million for LCS-1 Freedom and $704 million for LCS-2
    • In 2009, Lockheed Martin’s LCS-5 seaframe had a contractual price of $437 million and Austal’s LCS-6’s seaframe contractual price was $432 million, each for a block of 10 ships.
    • In March 2016, General Accounting Office (GAO) reported the total procurement cost of the first 32 LCSs, which worked out to an average unit cost of $655 million just for the basic seaframes.
    • GAO also reported the total cost for production of 64 LCS mission modules, which worked out to an average unit cost of $108 million per module.
    • Based on these GAO estimates, a mission-configured LCS (with one mission module) has a total unit cost of about $763 million.
  • In 2016, the GAO found that, “the ship would be less capable of operating independently in higher threat environments than expected and would play a more limited role in major combat operations.”
  • The flexible mission module concept has failed. Each ship will be configured for only one mission.
  • Individual mission modules are still under development, leaving deployed LCSs without key operational capabilities.
  • The ships are unreliable. In 2016, the GAO noted the inability of an LCS to operate for 30 consecutive days underway without a critical failure of one or more essential subsystems.
  • Both LCS designs are overweight and are not meeting original performance goals.
  • There was no cathodic corrosion protection system on LCS-1 and LCS-2. This design oversight led to serious early corrosion damage and high cost to repair the ships.
  • Crew training time is long.
  • The original maintenance plans were unrealistic.
  • The original crew complement was inadequate to support the complex ship systems and an installed mission module.

To address some of these issues, the LCS crew complement has been increased, an unusual crew rotation process has been implemented, and the first four LCSs have been withdrawn from operational service for use instead as training ships.

To address some of the LCS warfighting limitations, the Navy, in February 2014, directed the LCS vendors to submit proposals for a more capable vessel (originally called “small surface combatant”, now called “frigate” or FF) that could operate in all regions during conflict conditions. Key features of this new frigate include:

  • Built-in (not modular) anti-submarine and surface warfare mission systems on each FF
  • Over-the-horizon strike capability
  • Same purely defensive (point defense) anti-air capability as the LCS. Larger destroyers or cruisers will provide fleet air defense.
  • Lengthened hull
  • Lower top speed and less range

As you would expect, the new frigate proposals look a lot like the existing LCS designs. In 2016, the GAO noted that the Navy prioritized cost and schedule considerations over the fact that a “minor modified LCS” (i.e., the new frigate) was the least capable option considered.”  The competing designs for the new frigate are shown below (click on the graphic to enlarge):

LCS-program-slides-2016-05-18Source: U.S. NavyLCS-program-slides-2016-05-18-austalSource: U.S. Navy

GAO reported the following estimates for the cost of the new multi-mission frigate and its mission equipment:

  • Lead ship: $732 – 754 million
  • Average ship: $613 – 631 million
  • Average annual per-ship operating cost over a 25 year lifetime: $59 – 62 million

Note that the frigate lead ship cost estimate is less than the GAO’s estimated actual cost of an average LCS plus one mission module. Based on the vendor’s actual LCS cost control history, I’ll bet that the GAO’s frigate cost estimates are just the starting point for the cost growth curve.

To make room for the new frigate in the budget and in the current 308-ship fleet headcount limit, the Navy reduced the LCS buy to 32 vessels, and planed to order 20 new frigates from a single vendor. In December 2015, the Navy reduced the total quantity of LCS and frigates from 52 to 40. By mid-2016, Navy plans included only 26 LCS and 12 frigates.

2016 Top Ten Most Powerful Frigates in the World

To see what international counterparts the LCS and FF are up against, check out the January 2016 article, “Top Ten Most Powerful Frigates in the World,” which includes frigates typically in the 4,000 to 6,900 ton range (larger than LCS). You’ll find this at the following link:

https://defencyclopedia.com/2016/01/02/top-10-most-powerful-frigates-in-the-world/

There are no U.S. ships in this top 10.

So what do you think?

  • Are the single-mission LCSs really worth the Navy’s great investment in the LCS program?
  • Will the two-mission FFs give the Navy a world-class frigate that can operate independently in contested waters?
  • Would you want to serve aboard an LCS or FF when the fighting breaks out, or would you choose one of the more capable multi-mission international frigates?

Update: 9 January 2020

A 5 April 2019 article in The National Interest reported:

“The Pentagon Operational Test & Evaluation office’s review of the LCS fleet published back in January 2018 revealed alarming problems with both Freedom and Independence variants of the line, including: concerning issues with combat system elements like radar, limited anti-ship missile self-defense capabilities, and a distinct lack of redundancies for vital systems necessary to reduce the chance that “a single hit will result in loss of propulsion, combat capability, and the ability to control damage and restore system operation…..Neither LCS variant is survivable in high-intensity combat,” according to the report.”

The article’s link to the referenced 2018 Pentagon DOT&E report now results on a “404 – Page not found!” message on the DoD website. I’ve been unable to find that report elsewhere on the Internet.  I wonder why? See for yourself here:  https://nationalinterest.org/blog/buzz/no-battleship-littoral-combat-ship-might-be-navys-worst-warship-50882

I’d chalk the LCS program up as a huge failure, delivering unreliable, poorly-armed ships that do not yet have a meaningful, operational role in the U.S. Navy and have not been integrated as an element of a battle group.  I think others agree.  The defense bill signed by President Trump in December 2019 limits LCS fleet size and states that none of the authorized funds can be used to exceed “the total procurement quantity of 35 Littoral Combat Ships.” Do I hear an Amen?

For more information:

A lot of other resources are available on the Internet describing the LCS program, early LCS operations, the LCS-derived frigate program, and other international frigates programs. For more information, I recommend the following resources dating from 2016 to 2019:

  • “Littoral Combat Ship and Frigate: Delaying Planned Frigate Acquisition Would Enable Better-Informed Decisions, “ GAO-17-323, General Accounting Office, 18 April 2017:  https://www.gao.gov/products/GAO-17-323
  • “Storm-Tossed:  The Controversial Littoral Combat Ship,” Breaking Defense, November 2016.  The website Breaking Defense (http://breakingdefense.com) is an online magazine that offers defense industry news, analysis, debate, and videos. Their free eBook collects their coverage of the Navy’s LCS program.  You can get a copy at the following link:  http://info.breakingdefense.com/littoral-combat-ship-ebook

Modernizing the Marine Corps Amphibious Landing Capabilities

Peter Lobner

Updated 7 January 2019 and 15 December 2020

1.  Introduction

The U.S. Marine Corps is taking a two-prong approach to ensure their readiness to conduct forcible amphibious landing operations: (1) modernize the fleet of existing Assault Amphibious Vehicles (AAVs), the 71A, and (2) select the contractor for the next-generation Amphibious Combat Vehicles (ACVs). The firms involved in these programs are Science Applications International Corporation (SAIC) and BAE Systems.

Both the existing Marine AAVs and the new ACVs are capable of open-ocean ship launch and recovery operations from a variety of the Navy’s amphibious warfare ships, such as a landing ship dock (LSD) or landing platform dock (LPD). These ships may be as much as 12 miles (19 km) offshore. After traveling like a small boat toward the shore, maneuvering through the surf line, and landing on the beach, the AAVs and new ACVs operate as land vehicles to deliver troops, cargo, or perform other missions.

AAVs_preparing_to_debark_USS_Gunston_HallCurrent-generation AAV 71As in an LPD well deck. Source: Wikimedia Commons / U.S. Navy091016-N-5148B-052Current-generation AAV 71A disembarking from an LPD well deck into the open ocean. Source: U.S. Navy

The Marine Corps plans to maintain the ability to put 10 amphibious battalions ashore during a forcible landing operation.

Let’s take a look in more detail at the Marine Corps AAV 71A modernization program and the new ACV competition.

2.  The modernized AAV SU

The AAV SU is upgraded version of the existing, venerable Marine Corps AAV 71A, which can carry 25 embarked Marines. The AAV SU incorporates the following modernized systems and survivability upgrades:

  • armor protection on its flat underbelly
  • buoyant ceramic armor on the flanks
  • blast-resistant seats replacing legacy bench seating
  • new engine & transmission; greater horsepower & torque
  • improved water jets propulsors yielding higher speed at sea
  • external fuel tanks, and
  • upgraded vehicle controls and driver interface

Marine AAV 71ACurrent-generation AAV 71A after landing on a beach. Source: okrajoeSAIC AAV SU unveilingUnveiling AAV SU. Source: SAIC

In January 2016, SAIC unveiled the modernized AAV SU at its facility in Charleston SC and delivered the first prototype for testing at U.S. Marine Corps Base Quantico, VA on 4 March 2016. A total of 10 AAV SUs will be tested before the Marine Corps commits to upgrading its entire fleet of 392 AAVs.

Even after ACV deployment, the Marine Corps plans to maintain enough AAV SUs to equip four amphibious battalions.

You can view a Marine Corps video on the AAV survivability upgrade program at the following link:

3. The Next-generation ACV

On 24 November 2015, BAE Systems and SAIC were down-selected from a field of five competitors and awarded contracts to build engineering and manufacturing development prototypes of their respective next-generation ACVs. Both of the winning firms are offering large, eight-wheel drive vehicles that are designed to be more agile and survivable on land than the current AAV, with equal performance on the water.  The ACV is air-transportable in a C-130 Hercules or larger transport aircraft.

Under contracts valued at more than $100 million, BAE Systems and SAIC each will build 16 ACVs to be delivered in the January – April 2017 time frame for test and evaluation. It is expected that a winner will be selected in 2018 and contracted to deliver 204 ACVs starting in 2020. The new ACVs will form six Marine amphibious battalions that are all scheduled to be operational by the summer of 2023.

At the following link, you can view a Marine Corps video on the ACV program and its importance to the Marine’s “service defining” mission of making amphibious landings in contested areas:

BAE Systems ACV: Super AV

In 2011, BAE Systems teamed with the Italian firm Iveco to offer a variant of the Italian 8-wheeled Super AV amphibious vehicle to the Marine Corps.

The BAE version of this diesel-powered vehicle has a top speed of 65 mph (105 kph) on paved roads and 6 knots (6.9 mph, 11 kph) in the water. Its range is 12 miles (19 km) at sea followed by 200 miles on land. Two small shrouded propellers provide propulsion at sea. On land, the “H-drive” system provides power to individual wheels, so the vehicle can continue operating if an individual wheel is damaged or destroyed.

The armored passenger and crew compartments are protected by a V-shaped hull. Individuals are further protected from blast effects by shock-mounted seats.

On 27 September 2016, BAE Systems unveiled their 34-ton Super AV ACV, which normally will carry a crew of three and 11 embarked Marines, with a capability to carry two more for a total of 13 (i.e., a full Marine squad).

BAE Super AV unveiledBAE Super AV ACV unveiled. Source: BAE Systems

You can view a 2014 BAE Systems video on their Super AV at the following link:

https://www.youtube.com/watch?v=9QK7xUtzjA4

SAIC ACV: Terrex 2

SAIC partnered with ST Kinetics, which developed the Terrex amphibious vehicle currently in use by Singapore’s military. This vehicle currently is configured for a crew of three and 11 embarked Marines.

The basic configuration of SAIC’s Terrex 2 is similar to the BAE Super AV: V-shaped hull, shock-mounted seats and other protection for occupants, propeller driven in the water, independent wheel-driven on land, with similar mobility. SAIC’s Terrex 2 can reach speeds of 55 mph on paved roads and 7 knots (8 mph, 12.9 kph) in the open ocean. A Remote Weapon System (machine guns and cannon) and 10 “fusion cameras” allow closed-hatch missions with day/night 360-degree situational awareness.

SAIC Terrex 2 landing on beachSource: SAICSAIC ACVSource: SAIC

You can see a short 2014 SAIC video on their AAV SU upgrade program and their Terrex 2 ACV at the following link:

7 January 2019 Update:  BAE won the ACV competition in June 2018

On 19 June 2018, it was announced that the Marine Corps had selected BAE to build the next generation Amphibious Combat Vehicle and a contract for $198 million for the first 30 ACVs had been awarded to BAE.  These vehicles are due to be delivered in the fall of 2019 for use in Initial Operational Testing & Evaluation (IOT&E). A decision to begin full rate production of the ACV is expected in 2020.

You’ll find more information on the ACV selection and BAE contract award on the Breaking Defense website here:

https://breakingdefense.com/2018/06/bae-beats-upstart-saic-to-build-marine-amphibious-combat-vehicle/

15 December 2020 Update:  BAE Set to Begin Full-Rate Production of the Marines’ New Amphibious Combat Vehicles 

In December 2020, the Marine Corps awarded BAE Systems a contract valued at almost $185 million to start full-rate production of the ACV and deliver the first 36 amphibious combat vehicles. BAE expects that this first-lot order will increase to 72 vehicles in early 2021.  In following years, the Marines have options to order 80 vehicles annually over five years.

The Marine’s new BAE AVC on the beach at Marine Corps Base Camp Pendleton, California. Source: Andrew Cortez / U.S. Marine Corps

You’ll find more information at the following link:

https://www.military.com/daily-news/2020/12/14/marines-new-amphibious-combat-vehicles-set-begin-full-rate-production.html?ESRC=eb_201215.nl

Status of Ukraine’s Giant Transport Aircraft: Antonov An-124 and An-225

Peter Lobner, updated 26 September 2023

Historically, the Antonov Design Bureau was responsible for the design and development of large military and civil transport aircraft for the former Soviet Union. With headquarters and production facilities in and around Kiev, this Ukrainian aircraft manufacturing and servicing firm is now known as Antonov State Company. The largest of the jet powered transport aircraft built by Antonov are the four-engine An-124 and the even larger six-engine An-225.

An-124 Ruslan (NATO name: Condor)

The An-124 made its first flight in December 1982 and entered operational service in 1986. This aircraft is a counterpart to the Lockheed C-5A, which is the largest U.S. military transport aircraft. A comparison of the basic parameters of these two aircraft is presented in the following table.

An-124 vs C-5A_Aviatorjoedotnet

Source: aviatorjoe.net

As you can see in this comparison, the An-124 is somewhat larger than the C-5A, which has a longer range, but at a slower maximum speed.

The An-124 currently is operated by the Russian air force and also by two commercial cargo carriers: Ukraine’s Antonov Airlines and Russia’s Volga-Dnepr Airlines. The civil An-124-100 is a commercial derivative of the military An-124. The civil version was certified in 1992, and meets all current civil standards for noise limits and avionic systems.

In their commercial cargo role, these aircraft specialize in carrying outsized and/or very heavy cargo that cannot be carried by other aircraft. These heavy-lift aircraft serve civil and military customers worldwide, including NATO and the U.S. military. I’ve seen an An-124s twice on the tarmac at North Island Naval Station in San Diego. In both cases, it arrived in the afternoon and was gone before sunrise the next day. Loading and/or unloading occurred after dark.

An-124_RA-82028_09-May-2010

An-124-100. Source: Wikimedia Commons

As shown in the following photo, the An-124 can retract its nose landing gear and “kneel” to facilitate cargo loading through the raised forward door.

An-124_ramp down

An-124-100. Source: Mike Young / Wikimedia Commons

The following diagram shows the geometry and large size of the cargo hold on the An-124. The built-in cargo handling equipment includes an overhead crane system capable of lifting and moving loads up to 30 metric tons (about 66,100 pounds) within the cargo hold. As shown in the diagram below, the cargo hold is about 36.5 meters (119.7 feet) long, 6.4 meters (21 feet) wide, and the clearance from the floor to the ceiling of the cargo hold is 4.4 meters (14.4 feet). The installed crane hoists may reduce overhead clearance to 3.51 meters (11.5 feet).

An-124-diagram_tcm87-4236

An-124-100 cargo hold dimensions. Source: aircharterservice.com

An-124_takeoff

An-124-100. Source: aircharterservice.com

Production of the An-124 was suspended following the Russian annexation of Crimea in 2014 and the ongoing tensions between Russia and Ukraine. In spite of repeated attempts by Ukraine to restart the An-124 production line, it appears that Antonov may not have the resources to restart An-124 production. 

An-225 Mriya

The An-225 was adapted from the An-124 and significantly enlarged to serve as the carrier aircraft for the Soviet space shuttle, the Buran. The relative sizes of the An-124 and An-225 are shown in the following diagram, with a more detailed comparison in the following table.

An-124 & 225 planform comparison

An-124 & -225 comparison. Source: Airvectors.com

An-124 & 225 comparison

An-124 & -225 comparison. Source: aviatorjoe.net

The only An-225 ever produced made its first flight in December 1988. It is shown carrying the Buran space shuttle in the following photo.

AN-225 & Buran

An-225 carrying Buran space shuttle. Source: fcba.tumblr.com

After the collapse of the Soviet Union in 1991 and the cancellation of the Buran space program, the An-225 was mothballed for eight years until Antonov Airlines reactivated the aircraft for use as a commercial heavy-lift transport. In this role, it can carry ultra-heavy / oversize cargo weighing up to 250 metric tons (551,000 pounds).

An-225 gear down

An-225 Mriya. Source: AntonovAn-225 gear up

In 2016, it appeared that the giant An-225 was about to enter series production after Antonov and Aerospace Industry Corporation of China (AICC) signed a deal on 30 August 2016 for An-225 production in China. At the time, it was expected that the first new An-225 could be produced in China as early as in 2019. A Chinese An-225 would modernize and greatly expand China’s military and civil airlift capabilities.  While it isn’t clear how that airlift capability would be employed, it certainly will improve China’s ability to deliver heavy machinery, bulk material, and many personnel anywhere in the world, including any location in and around the South China Sea that has an adequate runway.  

26 September 2023 update

In late February 2022, the An-225 was destroyed by invading Russian forces at the Hostomel Airport near Kyiv, where the giant aircraft was undergoing regular maintenance intended to support its continued operational use into the 2030s. 

Source: Oleksii Samsonov / KCSA via The Moscow Times

Source: Oleksii Samsonov via Aero Times

A second unfinished airframe of the An-225, originally intended for ground testing, still exists at an unspecified location.  That second airframe, plus serviceable parts salvaged from the original An-225, would form a starting point for building another flyable AN-225.

Time will tell if an An-225 can be rebuilt.  I hope we’ll see Mriya fly again.

For more information

Video

Update on North Korea’s Sinpo (Gorae) Submarine and KN-11 SLBM

Peter Lobner

In the presentation files from my 5 August 2015 talk, 60 Years of Marine Nuclear Power, I noted that, while North Korea has a program to develop nuclear-armed submarine launched ballistic missiles (SLBMs), it appears that their current focus is on installing these missiles on conventionally-powered submarines. The particular conventional missile-launching submarines (SSBs) identified were a refurbished Russian-designed Golf II-class SSB and a new, small indigenous SSB provisionally named Sinpo, for the shipyard where it was observed, or Gorae. Both the refurbished Golf II and the new Sinpo (Gorae) have missile tubes in the sail and are capable of launching missiles while submerged. You will find my presentation files on the Lyncean website under the Past Meetings tab. The direct link to the file containing information on the North Korean program is listed below:

https://lynceans.org/wp-content/uploads/2015/09/Part-4_UK-France-Others-60-yrs-of-marine-nuc-power.pdf

On 24 August 2016, North Korea launched a KN-11 ballistic missile from a submerged launcher, likely a submarine. The KN-11 missile flew 500 km (310 miles) downrange from the launch point into the Sea of Japan.

KN-11 launchSource: An undated photo from North Korean Central News Agency, “underwater test-fire of strategic submarine ballistic missile”

Range of the missile actually may be considerably greater because it appears to have been launched on a “lofted trajectory” that achieved a much higher apogee than normally would be associated with a maximum range ballistic flight. A similar higher-than-normal apogee was observed in the 21 July 2016 flight test of North Korea’s BM25 Musudan land-based, mobile, intermediate range ballistic missile (IRBM), which flew 402 km (250 miles) downrange, but reached an apogee of 1,400 km (870 miles). The extra energy required for the KN-11 and Musudan to reach an unusually high apogee would translate directly into greater downrange distance on a maximum range ballistic flight.

You can see a summary of North Korea’s KN-11 test program on the Wikipedia website at the following link:

https://en.wikipedia.org/wiki/KN-11#First_KN-11_Complete_Success_Test

For the best analysis of the Sinpo (Gorae) SSB and the KN-11 SLBM, I refer you to H. I. Sutton’s Covert Shores website at the following link:

http://www.hisutton.com/Analysis%20-%20Sinpo%20Class%20Ballistic%20Missile%20Sub.html

Sinpo_Gorae SSB_SuttonSource: H. I. Sutton Covert Shores

Sutton comments on the small size of the Sinpo (Gorae) SSB:

“It seems that she is built to the requirement of being the smallest possible boat to carry an NK-11……This reinforces the view that she is only a test boat with limited operational capability at most.”

While North Korea’s SSBs and SLBMs are works in progress, I think we are seeing substantial evidence that significant progress is being made on the submarine and the delivery vehicle. A big unknown is the development status of an operational nuclear warhead for the NK-11 missile. On 6 January 2016, North Korea conducted its fourth nuclear test. It has been reported that the yield from this test was in the 10-kiloton range. For comparison, the Little Boy bomb dropped on Hiroshima had a yield of about 15 kilotons. You can find a summary of North Korea’s nuclear tests on the Wikipedia website at the following link:

https://en.wikipedia.org/wiki/List_of_nuclear_weapons_tests_of_North_Korea

In the 29 Aug – 11 Sep 2016 issue of Aviation Week and Space Technology magazine, Daryl Kimball of the Arms Control Association is quoted as saying:

“North Korea’s accelerated pace of ballistic missile testing is definitely worrisome,” Kimball says. “They have not necessarily perfected some of these systems to the point where they are effective military systems. That said, if nothing is done to halt further ballistic missile testing, they’re going to eventually – and I mean within a few years – develop a rudimentary long-range capability to deliver a nuclear warhead.”

For quite some time, there has been speculation of technical collaboration between Iran and North Korea on development of long-range missiles, and perhaps nuclear weapons. North Korea’s credibility as a technology partner has been enhanced by their January 2016 successful nuclear test and the more recent tests of the KN-11 and BM25 delivery vehicles.