Tag Archives: DARPA

5G Wireless Defined

In my 20 April 2016 post, “5G is Coming, Slowly,” I discussed the evolution of mobile communications technology and the prospects for the deployment of the next generation: 5G. The complexity of 5G service relative to current generation 4G (LTE) service is daunting because of rapidly increasing technical demands that greatly exceed LTE core capabilities. Examples of technical drivers for 5G include the population explosion in the Internet of Things (IoT), the near-term deployment of operational self-driving cars, and the rise of virtual and augmented reality mobile applications.

Progress toward 5G is steadily being made. Here’s a status update.

1. International Telecommunications Union (ITU) technical performance requirements

The ITU is responsible for international standardization of mobile communications technologies. On 23 February 2017, the ITU released a draft report containing their current consensus definition of the minimum technical performance requirements for 5G wireless (IMT-2020) radio service.

The ITU authors note:

“….the capabilities of IMT-2020 are identified, which aim to make IMT-2020 more flexible, reliable and secure than previous IMT when providing diverse services in the intended three usage scenarios, including enhanced mobile broadband (eMBB), ultra-reliable and low-latency communications (URLLC), and massive machine type communications (mMTC).”

This ITU’s draft technical performance requirements report is a preliminary document that is a product of the second stage of the ITU’s standardization process for 5G wireless deployment, which is illustrated below:

ITU-IMT2020 roadmap crop

Source: ITU

The draft technical performance requirements report provides technical definitions and performance specifications in each of the following categories:

  • Peak data rate
  • Peak spectral efficiency (bits per hertz of spectrum)
  • User experience data rate
  • 5th percentile user spectral efficiency
  • Average spectral efficiency
  • Area traffic capacity
  • Latency
  • Connection density
  • Energy efficiency
  • Reliability
  • Mobility
  • Mobility interruption time
  • Bandwidth

You’ll find a good overview of the ITU’s draft performance requirements in an article by Sebastian Anthony entitled, “5G Specs Announced: “20 Gbps download, 1 ms latency, 1M device per square km,” at the following link:


You can download the ITU’s draft report, entitled “DRAFT NEW REPORT ITU-R [IMT-2020 TECH PERF REQ] – Minimum requirements related to technical performance for IMT-2020 radio interface(s),” at the following link:


In the ITU standardization process diagram, above, you can see that their final standardization documents will not be available until 2019 – 2020.

2. Industry 5G activities

Meanwhile, the wireless telecommunications industry isn’t waiting for the ITU to finalize IMT-2020 before developing and testing 5G technologies and making initial 5G deployments.

3rd Generation Partnership Project (3GPP)

In February 2017, the organization 5G Americas summarized the work by 3GPP as follows:

“As the name implies the IMT-2020 process is targeted to define requirements, accept technology proposals, evaluate the proposals and certify those that meet the IMT-2020 requirements, all by the 2020 timeframe. This however, requires that 3GPP start now on discussing technologies and system architectures that will be needed to meet the IMT-2020 requirements. 3GPP has done just that by defining a two phased 5G work program starting with study items in Rel-14 followed by two releases of normative specs spanning Rel-15 and Rel-16 with the goal being that Rel-16 includes everything needed to meet IMT-2020 requirements and that it will be completed in time for submission to the IMT-2020 process for certification.”

The 2016 3GPP timeline for development of technologies and system architectures for 5G is shown below.

3GGP roadmap 2016

Source: 3GPP / 5G Americas White Paper

Details are presented in the 3GPP / 5G Americas white paper, “Wireless Technology Evolution Towards 5G: 3GPP Releases 13 to Release 15 and Beyond,” which you can download at the following link:


Additional details are in a February 2017 3GPP presentation, “Status and Progress on Mobile Critical Communications Standards,” which you can download here:


In this presentation, you’ll find the following diagram that illustrates the many functional components that will be part of 5G service. The “Future IMT” in the pyramid below is the ITU’s IMT-2020.

ITU 5G functions

Source: 3GPP presentation

AT&T and Verizon plan initial deployments of 5G technology

In November 2016, AT&T and Verizon indicated that their initial deployment of 5G technologies would be in fixed wireless broadband services. In this deployment concept, a 5G wireless cell would replace IEEE 802.11 wireless or wired routers in a small coverage area (i.e., a home or office) and connect to a wired / fiber terrestrial broadband system. Verizon CEO Lowell McAdam referred to this deployment concept as “wireless fiber.” You’ll find more information on these initial 5G deployment plans in the article, “Verizon and AT&T Prepare to Bring 5G to Market,” on the IEEE Spectrum website at the following link:


Under Verizon’s current wireless network densification efforts, additional 4G nodes are being added to better support high-traffic areas. These nodes are closely spaced (likely 500 – 1,000 meters apart) and also may be able to support early demonstrations of a commercial 5G system.

Verizon officials previously has talked about an initial launch of 5G service in 2017, but also have cautioned investors that this may not occur until 2018.

DARPA Spectrum Collaboration Challenge 2 (SC2)

In my 6 June 2016 post, I reported on SC2, which eventually could benefit 5G service by:

“…developing a new wireless paradigm of collaborative, local, real-time decision-making where radio networks will autonomously collaborate and reason about how to share the RF (radio frequency) spectrum.”

If SC2 is successful and can be implemented commercially, it would enable more efficient use of the RF bandwidth assigned for use by 5G systems.

3. Conclusion

Verizon’s and AT&T’s plans for early deployment of a subset of 5G capabilities are symptomatic of an industry in which the individual players are trying hard to position themselves for a future commercial advantage as 5G moves into the mainstream of wireless communications. This commercial momentum is outpacing ITU’s schedule for completing IMT-2020. The recently released draft technical performance requirements provide a more concrete (interim) definition of 5G that should remove some uncertainty for the industry.




The Mysterious Case of the Vanishing Electronics, and More

Announced on 29 January 2013, DARPA is conducting an intriguing program known as VAPR:

“The Vanishing Programmable Resources (VAPR) program seeks electronic systems capable of physically disappearing in a controlled, triggerable manner. These transient electronics should have performance comparable to commercial-off-the-shelf electronics, but with limited device persistence that can be programmed, adjusted in real-time, triggered, and/or be sensitive to the deployment environment.

VAPR aims to enable transient electronics as a deployable technology. To achieve this goal, researchers are pursuing new concepts and capabilities to enable the materials, components, integration and manufacturing that could together realize this new class of electronics.”

VAPR has been referred to as “Snapchat for hardware”. There’s more information on the VAPR program on the DARPA website at the following link:


Here are a few of the announced results of the VAPR program.

Disintegrating electronics

In December 2013, DARPA awarded a $2.5 million VAPR contract to the Honeywell Aerospace Microelectronics & Precision Sensors segment in Plymouth, MN for transient electronics.

In February 2014, IBM was awarded a $3.4 million VAPR contract to develop a radio-frequency based trigger to shatter a thin glass coating: “IBM plans is to utilize the property of strained glass substrates to shatter as the driving force to reduce attached CMOS chips into …. powder.” Read more at the following link:


Also in February 2014, DARPA awarded a $2.1 million VAPR contract to PARC, a Xerox company. In September 2015, PARC demonstrated an electronic chip built on “strained” Corning Gorilla Glass that will shatter within 10 seconds when remotely triggered. The “strained” glass is susceptible to heat. On command, a resistor heats the glass, causing it to shatter and destroy the embedded electronics. This transience technology is referred to as: Disintegration Upon Stress-release Trigger, or DUST. Read more on PARC’s demonstration and see a short video at the following link:


Disintegrating power source

In December 2013, USA Today reported that DARPA awarded a $4.7 million VAPR contract to SRI International, “to develop a transient power supply that, when triggered, becomes unobservable to the human eye.” The power source is the SPECTRE (Stressed Pillar-Engineered CMOS Technology Readied for Evanescence) silicon-air battery. Details are at the following link:


On 12 August 2016, the website Science Friday reported that Iowa State scientists have successfully developed a transient lithium-ion battery:

“They’ve developed the first self-destructing, lithium-ion battery capable of delivering 2.5 volts—enough to power a desktop calculator for about 15 minutes. The battery’s polyvinyl alcohol-based polymer casing dissolves in 30 minutes when dropped in water, and its nanoparticles disperse. “

You can read the complete post at:


ICARUS (Inbound, Controlled, Air-Releasable, Unrecoverable Systems)

On 9 October 2015, DARPA issued “a call for disappearing delivery vehicles,” which you can read at the following link:


In this announcement DARPA stated:

“Our partners in the VAPR program are developing a lot of structurally sound transient materials whose mechanical properties have exceeded our expectations,” said VAPR and ICARUS program manager Troy Olsson. Among the most eye-widening of these ephemeral materials so far have been small polymer panels that sublimate directly from a solid phase to a gas phase, and electronics-bearing glass strips with high-stress inner anatomies that can be readily triggered to shatter into ultra-fine particles after use. A goal of the VAPR program is electronics made of materials that can be made to vanish if they get left behind after battle, to prevent their retrieval by adversaries.”

With the progress made in VAPR, it became plausible to imagine building larger, more robust structures using these materials for an even wider array of applications. And that led to the question, ‘What sorts of things would be even more useful if they disappeared right after we used them?’”

This is how DARPA conceived the ICARUS single-use drone program described in October 2015 in Broad Area Announcement DARPA-BAA-16-03. The goal of this $8 million, 26-month DARPA program is to develop small drones with the following attributes

  • One-way, autonomous mission
  • 3 meter (9.8 feet) maximum span
  • Disintegrate in 4-hours after payload delivery, or within 30 minutes of exposure to sunlight
  • Fly a lateral distance of 150 km (93 miles) when released from an altitude of 35,000 feet (6.6 miles)
  • Navigate to and deliver various payloads up to 3 pounds (1.36 kg) within 10 meters (31 feet) of a GPS-designated target

The ICARUS mission profile is shown below.

ICARUS mission profileICARUS mission. Source: DARPA-BAA-16-03

More information on ICARUS is available on the DARPA website at:


On 14 June 2016, Military & Aerospace reported that two ICARUS contracts had been awarded:

  • PARC (Palo Alto, CA): $2.3 million Phase 1 + $1.9 million Phase 2 option
  • DZYNE Technologies, Inc. (Fairfax, VA): $2.9 million Phase 1 + $3.2 million Phase 2 option

You can watch a short video describing the ICARUS competition at the following link:


The firm Otherlab (https://otherlab.com) has been involved with several DARPA projects in recent years. While I haven’t seen a DARPA announcement that Otherlab is a funded ICARUS contractor, a recent post by April Glaser on the recode website indicates that the Otherlab has developed a one-way, cardboard glider capable of delivering a small cargo to a precise target.

“When transporting vaccines or other medical supplies, the more you can pack onto the drone, the more relief you can supply,” said Star Simpson, an aeronautics research engineer at Otherlab, the group that’s building the new paper drone. If you don’t haul batteries for a return trip, you can pack more onto the drone, says Simpson.

The autonomous disposable paper drone flies like a glider, meaning it has no motor on board. It does have a small computer, as well as sensors that are programed to adjust the aircraft’s control surfaces, like on its wings or rudder, that determine where the aircraft will travel and land.”

 Otherlab_SkyMachines_APSARA.0Sky machines. Source: Otherworld

Read the complete post on the Otherlab glider on the recode website at the following link:


The future

The general utility of vanishing electronics, power sources and delivery vehicles is clear in the context of military applications. It will be interesting to watch the future development and deployment of integrated systems using these vanishing resources.

The use of autonomous, air-releasable, one-way delivery vehicles (vanishing or not) also should have civilian applications for special situations such as emergency response in hazardous or inaccessible areas.



DARPA Cyber Grand Challenge (CGC)

DARPA launched the Cyber Grand Challenge (CGC) in 2014. This is a competition in which each competitor team attempts to create an automatic IT network defense system that can analyze its own performance during attacks by an intelligent adversaries, identify security flaws, formulate patches, and deploy the patches in real-time on the network being protected. This DARPA competition will “give these groundbreaking prototypes a league of their own, allowing them to compete head-to-head to defend a network of bespoke software.”

The longer-term DARPA goal is to promote technology that leads to operational, automatic, scalable, adaptive, network defense systems operating at machine speed to protect IT networks against intelligent adversaries.

The CGC Challenge Competitor Portal is at the following link:


The Master Schedule for CGC is shown in the following chart:

CGC Master ScheduleSource: DARPA

A slide presentation reporting the lessons learned from the first year of the CGC is available at the following link:


This is a complex slide presentation that benefits greatly from seeing it along with a video of the actual presentation made by Mike Walker at the 12 – 14 August 2015 24th USENIX Security Symposium. You will find this rather long (1 hour 17 min) video at the following link:


In the 2015 Challenge Qualification Event, seven finalists were qualified. The finals will be held from 54 August 2016 at the Paris Hotel & Convention Center in Las Vegas, Nevada. The Award Ceremony will be held at the beginning of DEF CON 24 on Friday, 5 August 2016.

CGCEventFirstAutomatedNetDefense  Source: DARPA

This is exciting stuff! The results are certain to be very interesting.

8 August 2016 Update: Carnegie Mellon’s Mayhem computer system won DARPA’s CGC

Seven invited teams competed for $4 million in prizes at the DARPA CGC. The $2 million grand prize winner was the Mayhem computer system designed by Carnegie Mellon’s team ForAllSecure. The $1 million second place prize was awarded to the Xandra computer system designed by team TECHx of Ithaca, NY, and Charlottesville, VV. Third place and a $750K prize was awarded to the Mechanical Phish computer system developed by the Shellphish team of Santa Barbara, CA.

You can read details on the DARPA website at the following link:


Also see the following article on the TechCrunch website for more details on the CGC Finals competition.




New DARPA Grand Challenge: Spectrum Collaboration Challenge (SC2)

On 23 March 2016, the Defense Advanced Projects Research Agency (DARPA) announced the SC2 Grand Challenge in Las Vegas at the International Wireless Communications Expo (IWCE). DARPA described this new Grand Challenge as follows:

“The primary goal of SC2 is to imbue radios with advanced machine-learning capabilities so they can collectively develop strategies that optimize use of the wireless spectrum in ways not possible with today’s intrinsically inefficient approach of pre-allocating exclusive access to designated frequencies. The challenge is expected to both take advantage of recent significant progress in the fields of artificial intelligence and machine learning and also spur new developments in those research domains, with potential applications in other fields where collaborative decision-making is critical.”

You can read the DARPA press release on the SC2 Grand Challenge at the following link:


SC2 is a response to the rapid growth in demand for wireless spectrum by both U.S. military and civilian users.  A DARPA representative stated, “The current practice of assigning fixed frequencies for various uses irrespective of actual, moment-to-moment demand is simply too inefficient to keep up with actual demand and threatens to undermine wireless reliability.”  The complexity of the current radio frequency allocation in the U.S. can be seen in the following chart.


Chart Source: U.S. Department of Commerce, National Telecommunications and Infrastructure Administration

You can download a high-resolution PDF copy of the above U.S. frequency spectrum chart at the following link:


15 July 2016 Update: FCC allocates frequency spectrum to facilitate deploying 5G wireless technologies in the U.S.

On 14 July 2016, the Federal Communications Commission (FCC) announced:

“Today, the FCC adopted rules to identify and open up the high frequency airwaves known as millimeter wave spectrum. Building on a tried-and-true approach to spectrum policy that enabled the explosion of 4G (LTE), the rules set in motion the United States’ rapid advancement to next-generation 5G networks and technologies.

The new rules open up almost 11 GHz of spectrum for flexible use wireless broadband – 3.85 GHz of licensed spectrum and 7 GHz of unlicensed spectrum. With the adoption of these rules, the U.S. is the first country in the world to open high-band spectrum for 5G networks and technologies, creating a runway for U.S. companies to launch the technologies that will harness 5G’s fiber-fast capabilities.”

You can download an FCC fact sheet on this decision at the following link:


These new rules change the above frequency allocation chart by introducing terrestrial 5G systems into high frequency bands that historically have been used primarily by satellite communication systems.

Large Autonomous Vessels will Revolutionize the U.S. Navy

In this post, I will describe two large autonomous vessels that are likely to revolutionize the way the U.S. Navy operates. The first is the Sea Hunter, sponsored by Defense Advanced Projects Agency (DARPA), and the second is Echo Voyager developed by Boeing.

DARPA Anti-submarine warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV)

ACTUV conceptSource: DARPA

DARPA explains that the program is structured around three primary goals:

  • Demonstrate the performance potential of a surface platform conceived originally as an unmanned vessel.
    • This new design paradigm reduces constraints on conventional naval architecture elements such as layout, accessibility, crew support systems, and reserve buoyancy.
    • The objective is to produce a vessel design that exceeds state-of-the art manned vessel performance for the specified mission at a fraction of the vessel size and cost.
  •  Advance the technology for unmanned maritime system autonomous operation.
    • Enable independently deploying vessels to conduct missions spanning thousands of kilometers of range and months of duration under a sparse remote supervisory control model.
    • This includes autonomous compliance with maritime laws and conventions for safe navigation, autonomous system management for operational reliability, and autonomous interactions with an intelligent adversary.
  • Demonstrate the capability of an ACTUV vessel to use its unique sensor suite to achieve robust, continuous track of the quietest submarine targets over their entire operating envelope.

While DARPA states that ACTUV vessel is intended to detect and trail quiet diesel electric submarines, including air-independent submarines, that are rapidly proliferating among the world’s navies, that detect and track capability also should be effective against quiet nuclear submarines. The ACTUV vessel also will have capabilities to conduct counter-mine missions.

The ACTUV program is consistent with the Department of Defense (DoD) “Third Offset Strategy,” which is intended to maintain U.S. military technical supremacy over the next 20 years in the face of increasing challenges from Russia and China. An “offset strategy” identifies particular technical breakthroughs that can give the U.S. an edge over potential adversaries. In the “Third Offset Strategy”, the priority technologies include:

  • Robotics and autonomous systems: capable of assessing situations and making decisions on their own, without constant human monitoring
  • Miniaturization: enabled by taking the human being out of the weapons system
  • Big data: data fusion, with advanced, automated filtering / processing before human involvement is required.
  • Advanced manufacturing: including composite materials and additive manufacturing (3-D printing) to enable faster design / build processes and to reduce traditionally long supply chains.

You can read more about the “Third Offset Strategy” at the following link:


You also may wish to read my 19 March 2016 post on Arthur C. Clarke’s short story “Superiority.” You can decide for yourself if it relates to the “Third Offset Strategy.”

Leidos (formerly SAIC) is the prime contractor for the ACTUV technology demonstrator vessel, Sea Hunter. In August 2012, Leidos was awarded a contract valued at about $58 million to design, build, and operationally test the vessel.

In 2014, Leidos used a 32-foot (9.8 meter) surrogate vessel to demonstrate the prototype maritime autonomy system designed to control all maneuvering and mission functions of an ACTUV vessel. The first voyage of 35 nautical miles (65.8 km) was conducted in February 2014. A total of 42 days of at-sea demonstrations were conducted to validate the autonomy system.

Sea Hunter is an unarmed 145-ton full load displacement, diesel-powered, twin-screw, 132 foot (40 meters) long, trimaran that is designed to a wide range of sea conditions. It is designed to be operational up to Sea State 5 [moderate waves to 6.6 feet (2 meters) height, winds 17 – 21 knots] and to be survivable in Sea State 7 [rough weather with heavy waves up to 20 feet (6 meters) height]. The vessel is expected to have a range of about 3,850 miles (6,200 km) without maintenance or refueling and be able to deploy on missions lasting 60 – 90 days.

Sea Hunter side view cropSource: DARPA

Raytheon’s Modular Scalable Sonar System (MS3) was selected as the primary search and detection sonar for Sea Hunter. MS3 is a medium frequency sonar that is capable of active and passive search, torpedo detection and alert, and small object avoidance. In the case of Sea Hunter, the sonar array is mounted in a bulbous housing at the end of a fin that extends from the bottom of the hull; looking a bit like a modern, high-performance sailboat’s keel.

Sea Hunter will include sensor technologies to facilitate the correct identification of surface ships and other objects on the sea surface. See my 8 March 2015 post on the use of inverse synthetic aperture radar (ISAR) in such maritime surveillance applications.

During a mission, an ACTUV vessel will not be limited by its own sensor suit. The ACTUV vessel will be linked via satellite to the Navy’s worldwide data network, enabling it to be in constant contact with other resources (i.e., other ships, aircraft, and land bases) and to share data.

Sea Hunter was built at the Vigor Shipyard in Portland, Oregon. Construction price of the Sea Hunter is expected to be in the range from $22 to $23 million. The target price for subsequent vessels is $20 million.

You can view a DARPA time-lapse video of the construction and launch of Sea Hunter at the following link:


Sea Hunter launch 1Source: DARPA

Sea Hunter lauunch 2Source: DARPA

In the above photo, you can see on the bottom of the composite hull, just forward of the propeller shafts, what appears to be a hatch. I’m just speculating, but this may be the location of a retractable sonar housing, which is shown in the first and second pictures, above.

You can get another perspective of the launch and the subsequent preliminary underway trials in the Puget Sound in the DARPA video at the following link:


During the speed run, Sea Hunter reached a top speed of 27 knots. Following the preliminary trials, Sea Hunter was christened on 7 April 2016. Now the vessel starts an operational test phase to be conducted jointly by DARPA and the Office of Naval Research (ONR). This phase is expected to run through September 2018.

DARPA reported that it expects an ACTUV vessel to cost about $15,000 – $20,000 per day to operate. In contrast, a manned destroyer costs about $700,000 per day to operate.

The autonomous ship "Sea Hunter", developed by DARPA, is shown docked in Portland, Oregon before its christening ceremonySource: DARPA

You can find more information on the ACTUV program on the DARPA website at the following link:


If ACTUV is successful in demonstrating the expected search and track capabilities against quiet submarines, it will become the bane of submarine commanders anywhere in the world. Imagine the frustration of a submarine commander who is unable to break the trail of an ACTUV vessel during peacetime. During a period of conflict, an ACTUV vessel may quickly become a target for the submarine being trailed. The Navy’s future conduct of operations may depend on having lots of ACTUV vessels.

Echo Voyager Unmanned Underwater Vehicle (UUV)

Echo Explorer - front quarter viewSource: BoeingEcho Explorer - top openSource: Boeing

Echo Voyager is the third in a family of UUVs developed by Boeing’s Phantom Works. The first two are:

  • Echo Ranger (circa 2002): 18 feet (5.5 meters) long, 5 tons displacement; maximum depth 10,000 feet; maximum mission duration about 28 hours
  • Echo Seeker (circa 2015): 32 feet (9.8 meter) long; maximum depth 20,000 feet; maximum mission duration about 3 days

Both Echo Ranger and Echo Seeker are battery powered and require a supporting surface vessel for launch and recovery at sea and for recharging the batteries. They successfully have demonstrated the ability to conduct a variety of autonomous underwater operations and to navigate safely around obstacles.

Echo Voyager, unveiled by Boeing in Huntington Beach, CA on 10 March 2016, is a much different UUV. It is designed to deploy from a pier, autonomously conduct long-duration, long-distance missions and return by itself to its departure point or some other designated destination. Development of Echo Voyager was self-funded by Boeing.

Echo Voyager is a 50-ton displacement, 51 foot (15.5 meters) long UUV that is capable of diving to a depth of 11,000 feet (3,352 meters). It has a range of about 6,500 nautical miles (12,038 km) and is expected to be capable of autonomous operations for three months or more. The vessel is designed to accommodate various “payload sections” that can extend the length of the vessel up to a maximum of 81 feet (24.7 meters).

You can view a Boeing video on the Echo Voyager at the following link:


The propulsion system is a hybrid diesel-electric rechargeable system. Batteries power the main electric motor, enabling a maximum speed is about 8 knots. Electrically powered auxiliary thrusters can be used to precisely position the vessel at slow speed. When the batteries require recharging,

The propulsion system is a hybrid diesel-electric rechargeable system. Batteries power the main electric motor, enabling a maximum speed is about 8 knots. Electrically powered auxiliary thrusters can be used to precisely position the vessel at slow speed. When the batteries require recharging, Echo Voyager will rise toward the surface, extend a folding mast as shown in the following pictures, and operate the diesel engine with the mast serving as a snorkel. The mast also contains sensors and antennae for communications and satellite navigation.

Echo Explorer - mast extendingSource: screenshot from Boeing video at link aboveEcho Explorer - snorkelingSource: screenshot from Boeing video at link above

The following image, also from the Boeing video, shows deployment of a payload onto the seabed.Echo Explorer - emplacing on seabedSource: screenshot from Boeing video at link above

Sea trials off the California coast are expected in mid-2016.

Boeing currently does not have a military customer for Echo Voyager, but foresees the following missions as being well-suited for this type of UUV:

  • Surface and subsurface intelligence, surveillance, and reconnaissance (ISR)
  • ASW search and barrier patrol
  • Submarine decoy
  • Critical infrastructure protection
  • Mine countermeasures
  • Weapons platform

Boeing also expects civilian applications for Echo Voyager in offshore oil and gas, marine engineering, hydrography and other scientific research.

28 July 2016 update: Sea Hunter ACTUV performance testing

On 1 May 2016, Sea Hunter arrived by barge in San Diego and then started initial performance trial in local waters.

ACTUV in San Diego BaySource: U.S. Navy

You can see a video of Sea Hunter in San Diego Bay at the following link:


On 26 July 2016, Leidos reported that it had completed initial performance trials in San Diego and that the ship met or surpassed all performance objectives for speed, maneuverability, stability, seakeeping, acceleration, deceleration and fuel consumption. These tests were the first milestone in the two-year test schedule.

Leidos indicated that upcoming tests will exercise the ship’s sensors and autonomy suite with the goals of demonstrating maritime collision regulations compliance capability and proof-of-concept for different Navy missions

DARPA Maximum Mobility & Manipulation (M3) Program is Showing Impressive New Results with the Boston Dynamics / MIT Cheetah

The two primary goals of the M3 program are:

  • Create a significantly improved scientific framework for the rapid design and fabrication of robot systems and greatly enhance robot mobility and manipulation in natural environments.
  • Significantly improve robot capabilities through fundamentally new approaches to the engineering of better design tools and fabrication methods.

More details on the M3 program are presented on the following DARPA website:


In September 2012, the DARPA / Boston Dynamics / MIT Cheetah 4-legged robot, being developed under the M3 program, reached a top speed of over 29 mph in a tethered test on a treadmill, exceeding the fastest speed ever run by a human, Usain Bolt, at 27.78 mph in a 20-meter sprint. You can see a video of this tethered test of the Cheetah at the following link:


In May 2015, the Cheetah demonstrated it’s ability to hurdle obstacles up to 18”tall in both tethered treadmill and untethered indoor track tests while running at an average speed of about 5 mph.

MIT-Jumping-Cheetah-1  Source: MIT

You can read the article and see a video of this test at the following link:


As described in this article:

“To get a running jump, the robot plans out its path, much like a human runner: As it detects an approaching obstacle, it estimates that object’s height and distance. The robot gauges the best position from which to jump, and adjusts its stride to land just short of the obstacle, before exerting enough force to push up and over. Based on the obstacle’s height, the robot then applies a certain amount of force to land safely, before resuming its initial pace.”

 On the treadmill, the Cheetah only had about a meter in which to detect the obstacle and then plan and execute the jump. Nonetheless, the Cheetah cleared the obstacles about 70% of the time. I can only imagine that a human runner on that same treadmill might not have performed much better. In the untethered tests on an indoor track, the Cheetah cleared the obstacles about 90% of the time. Future tests will explore the ability of the Cheetah to clear hurdles on softer terrain.

You can see more high-mobility robots being developed by Boston Dynamics at the following link:


These robots include:

  • Atlas: a high mobility, humanoid (bipedal) robot designed to negotiate outdoor, rough terrain. Atlas will be one of the competitors in the DARPA Robotics Challenge (DRC) Finals that will take place on 5 – 6 June 2015 at Fairplex in Pomona, California. See my 23 March 2015 post for more information on the DRC Finals.
  • LS3: a rough-terrain quadruped robot designed to go anywhere soldiers go on foot, helping carry their load.
  • PETMAN: an anthropomorphic (bipedal) robot designed for testing chemical protection clothing.
  • BigDog: a rough-terrain quadruped robot that walks, runs, climbs and carries heavy loads.
  • Sand Flea: a small robot that drives like an remote-controlled car on flat terrain, but can jump 30 ft. into the air to overcome obstacles
  • RHex: a six-legged, high mobility robot designed to climb in rock fields, mud, sand, vegetation, fallen telephone poles, railroad tracks, and up slopes and stairways.
  • RiSE: a robot that uses micro-claws to climb vertical terrain such as walls, trees and fences.
  • LittleDog: a quadruped robot designed for research on learning locomotion.