Category Archives: Engineering

VBB-3, the World’s Most Powerful Electric Car, will Challenge the Land Speed Record in 2016

Venturi Buckeye Bullet-3 (VBB-3) is an all-electric, four wheel drive, land speed record (LSR) car that has been designed to exceed 400 mph (643.7 km/h). The organizations involved in this project are:

  • Venturi Automobiles:

This Monaco-based company is a leader in the field of high performance electric vehicles. Read more at the Venturi website at the following link:

http://en.venturi.fr/challenges/world-speed-records

  • Ohio State University (OSU) Center for Automotive Research (CAR):

OSU’s CAR has been engaged in all-electric LSR development and testing since 2000. On 3 October 2004 at the Bonneville Salt Flats in Utah, the original nickel-metal hydride (NiMH) battery-powered Buckeye Bullet reached a top speed of 321.834 mph (517.942 km/h).

In an on-going program known as Mission 01, started in 2009, OSU partnered with Venturi to develop, test, and conduct the land speed record runs of the hydrogen fuel cell-powered VBB-2, the battery-powered VBB-2.5, and the more powerful battery-powered VBB-3.  Read more at the OSU / CAR website at following link:

https://car.osu.edu/search/node/VBB-3

 The Venturi – OSU team’s accomplishments to date are:

  • 2009:  The team’s first world land speed record was achieved on the Bonneville Salt Flats with hydrogen fuel cell-powered VBB-2 at 303 mph (487 km/h).
  •  2010:  The team returned to the salt flats with the 700 hp lithium-ion battery powered VBB-2.5 which set another world record at 307 mph (495 km/h); with a top speed at 320 mph (515 km/h).
  •  2013:  The 3,000 hp lithium iron phosphate battery-powered VBB-3 was unveiled. Due to the flooding of the Bonneville Salt Flats, the FIA and the organizers of the world speed records program cancelled the 2013 competition.
  •  2014Poor track conditions at Bonneville persisted after flooding from a summer storm. Abbreviated test runs by VBB-3 yielded a world record in its category (electric vehicle over 3.5 metric tons) with an average speed of 212 mph (341 km/h) and a top speed of 270 mph (435 km/h).
  •  2015:  Poor track conditions at Bonneville persisted after flooding from a summer storm. Abbreviated test runs by VBB-3 yielded a world record in its category (electric vehicle over 3.5 metric tons) with an average speed of 212 mph (341 km/h) and a top speed of 270 mph (435 km/h).

You will find a comparison of the VBB-2, VBB-2.5 and VBB-3 vehicles at the following link:

http://en.vbb3.venturi.fr/about/the-car

VBB-3 has a 37.2 ft. (11.35 meter) long, slender, space frame chassis that houses eight battery packs with a total of 2,000 cells, two 1,500 hp AC induction motors developed by Venturi for driving the front and rear wheels, a coolant system for the power electronics, disc brakes and a braking parachute, and a small cockpit for the driver. The basic internal arrangement of these components in the VBB-3 chassis is shown in the following diagram.

VBB-3 internalSource: Venturi

You can see a short video of a test drive of VBB-3 without its external skin at the following link:

http://en.vbb3.venturi.fr

The exterior aerodynamic carbon fiber shell was designed with the aid of the OSU Supercomputer Center to minimize vehicle drag and lift.

VBB-3 skinSource: Venturi

The completed VBB-3 with members of the project team is shown below.

VBB-3 completeSource: Venturi

A good video showing the 2010 VBB-2.5 record run and a 2014 test run of VBB-3 is at the following link:

https://www.youtube.com/watch?v=KLn07Y-t1Xc&ebc=ANyPxKqkVxPKQWnYXzUemRbE5WWlRIJUbaXA-UN6XPNoiDZG1O4NsFq8RE08QlrfdbfkxKmE32MEf5g2Qw0_WQbFXBvKYz9qwg

VBB-3 currently is being prepared in the OSU / CAR workshop in Columbus, Ohio, for another attempt at the land speed record in summer 2016. A team of about 25 engineers and students are planning to be at the Bonneville Salt Flats in summer 2016 with the goal of surpassing 372 mph (600 km/h).

You can subscribe to Venturi new releases on VBB-3 at the following link:

http://en.venturi.fr/news/the-vbb-3-gets-ready

VBB-3 at BonnevilleSource: Venturi

Update 2 January 2017: VBB-3 sets new EV land speed record

On 19 September 2016, VBB-3 set an electric vehicle (Category A Group VIII Class 8) land-speed record of 341.4 mph (549 kph), during a two-way run within one hour on the Bonneville salt flats in Utah. You can read the OSU announcement at the following link:

https://news.osu.edu/news/2016/09/21/ohio-states-all-electric-venturi-buckeye-bullet-3-sets-new-landspeed-record/

You also can watch a short video of VBB-3’s record run at the following link:

https://www.youtube.com/watch?v=rIqT4qLtGcY

Certification of this EV speed record by the Federation Internationale de l’Automobile’s (FIA) is still pending.

The Venturi-OSU team believes VBB-3 has the capability to achieve 435 mph (700 kph) in the right conditions, so we can expect more record attempts in the future.

New From The National Academies Press

My 14 March 2015 post provided an introduction to The National Academies Press (NAP), which is a very good source for reports and other documents on the following topics:

  • Agriculture
  • Behavioral & social sciences
  • Biographies & autobiographies
  • Biology & life sciences
  • Computers & information technology
  • Conflict & security issues
  • Earth sciences
  • Education
  • Energy & energy conservation
  • Engineering & technology
  • Environment & environmental studies
  • Food & nutrition
  • Health & medicine
  • Industry & labor
  • Mathematics, chemistry & physics
  • Policy for science & technology
  • Space & aeronautics
  • Transportation

Most of the NAP reports can be downloaded for free as pdf files if you establish a MyNAP account. If you haven’t set up such an account, you can do so at the following link:

http://www.nap.edu/content/using-mynap

With this account, you also can get e-mail notifications of new NAP reports.

For those of you who have not set up a MyNAP account, here are several new NAP reports that I found to be interesting.

Infusing Ethics into the Development of Engineers (2016)

Ethical practice in engineering is critical for ensuring public trust in the field and in its practitioners, especially as engineers increasingly tackle international and socially complex problems that combine technical and ethical challenges. This report aims to raise awareness of the variety of exceptional programs and strategies for improving engineers’ understanding of ethical and social issues and provides a resource for those who seek to improve ethical development of engineers at their own institutions.

NAP-infuse engineers  Source: NAP

Reducing the Use of Highly Enriched Uranium in Civilian Research Reactors (2016)

Today, 74 civilian research reactors around the world, including 8 in the U.S., use or are planning to use HEU fuel. In the past decades, many civilian reactors around the world have been either shut down or converted from HEU to low enriched uranium fuel. Despite this progress, the large number of remaining HEU-fueled reactors demonstrates that further progress is needed on a worldwide scale.

Print  Source: NAP

Enhancing Participation in the U.S. Global Change Research Program (2016)

The U.S. Global Change Research Program (USGCRP) is a collection of 13 Federal entities charged by law to assist the U.S. and the world to understand, assess, predict, and respond to human-induced and natural processes of global change. As the understanding of global change has evolved over the past decades and as demand for scientific information on global change has increased, the USGCRP has increasingly focused on research that can inform decisions to cope with current climate variability and change, to reduce the magnitude of future changes, and to prepare for changes projected over the coming decades.

NAP-global change  Source: NAP

Frontiers of Engineering – Reports on Leading-Edge Engineering from the 2015 Symposium (2016)

This volume presents papers on the following topics covered at the National Academy of Engineering’s 2015 U.S. Frontiers of Engineering Symposium:

  • Cyber security and privacy
  • Engineering the search for Earth-like exoplanets
  • Optical and mechanical metamaterials
  • Forecasting natural disasters

NAP-frontiers of engg 2015  Source: NAP

There are many other annual reports in the NAP “Frontiers of Engineering” series, dating back to at least 1997, and covering many other engineering topics.

I hope you’ll take some time and browse the NAP library for documents that are of interest to you. You can start your browsing, without a MyNAP account, at the following link:

http://www.nap.edu

Just How Flat is Hakskeen Pan?

If you will be driving the UK’s Bloodhound supersonic car (SSC) in 2016, you really care about the answer to that question.

Hakskeen Pan is a very flat region in the Northwestern corner of South Africa, and it is the site selected by the Bloodhound Project team for a 16 km (9.94 mile) track that will be used for their world land speed record attempt.

Hakskeen Pan mapSource: adapted from http://southafricamap.facts.co/

My 2 March 2015 post introduced you to the Bloodhound Project and gave you the link to their website where you can get a complete update on the project and sign up for their blog. Here again is the link to the Bloodhound Project home page:

http://www.bloodhoundssc.com/project

So, how flat is Hakskeen Pan and how much does it matter to a land speed record car traveling at 1,000 mph (1,609 kph)? The Cape Town, South Africa, survey company Lloyd & Hill surveyed the entire 16 km by 500 meter wide track surface (an area of about 8 million square meters) measuring the elevation in each square meter to an accuracy of 10 mm (0.39 in) or less. Using laser-scanning technology to collect data, and some considerable computing resources, Lloyd & Hill reduced four billion laser measurements into a 3-dimensional surface map of Hakskeen Pan. Key findings were:

  • Hakskeen Pan has a very gentle slope from north to south: dropping 300 mm in 16 km (about one foot in 10 miles)
  • Across the whole surface, the biggest ‘bumps’ and ‘dips’ are less than 50 mm (2 inches) from the average elevation
  • There’s an 80 mm (3.12 in) ‘step’ that occurs in a distance of 180 m (590 ft) running across the Pan, just over 9 km from the northern end of the track, and just where the car will be travelling at 1,000 mph.

BLOODHOUND SSC-scanned area of Hakskeen PanSource: The Bloodhound Project

The Bloodhound SSC has independent double-wishbone suspension on all four wheels. Preliminary dynamic analysis of the Bloodhound SSC’s suspension response to the measured surface irregularities shows that the vehicle should not be subject to loads of more than 1.0 – 1.5 g during it’s world land speed record attempt.   The suspension is designed to cope with up to 4 g.

Check out the details of the Hakskeen Pan site survey and the vehicle dynamic analysis at the following link:

http://www.bloodhoundssc.com/blog/andy-green’s-diary-–-august-2015

Also check out the Education tab on the Bloodhound Project website. I think you will be pleased to see how this exciting engineering project is working to engage with and inspire the next generation of scientists and engineers.

23 January 2017 Update – Hakskeen Pan floods

 Hakskeen Pan flooded Jan2017Source: The Bloodhound Project

The Bloodhound team reported:

“This particular flood was caused mainly by the rain in Namibia and flooding from the rivers, rather than actual rainfall on the Pan and surrounding catchment area, as there are many rivers that flow into the Pan.

Having the desert flood like this is very good news for us, as flooding helps to repair the surface from any damage that may have been caused in the final preparation and clearance of the desert, and it helps to create the best possible surface for land speed record racing.”

Read more at the following link:

http://www.bloodhoundssc.com/news/hakskeen-pan-update-0

 

Status of Desalination Plants in California

On 9 June 2015, Forbes reported that the Diablo Canyon NPP, located on the coast near San Luis Obisbo, CA, meets 100% of it’s own fresh water needs with it’s own reverse osmosis (RO) + ultrafiltration desalination plant.

Diablo-Canyon-Nuclear-Power-Plant  Source: PGE

Diablo Canyon salination_1 Source: PGE

This is the largest desalinization plant currently operating on the West coast. The current fresh water production rate is 675,000 gallons/day; about 40% of full capacity: 1,500,000 gallons/day (1,681 acre-feet/year). The Forbes article suggests that the Diablo Canyon NPP would quickly be able to help the nearby communities that currently are experiencing a severe water shortage as a result of the four-year California drought. With some additional modular RO units and a pipeline to connect to the public water system, up to 825,000 gallons/day could be delivered for public consumption.

Other operating desalination plants in regular use in California are:

Sand City Coastal (seawater) Desalination Plant in Monterey County: 300 acre-feet/year (268,000 gallons/day).

  • Southern California Edison seawater desalination plant on Catalina Island: 224 acre-feet/year (200,000 gallons/day).
  • Cambria Community Services District brackish water desalination plant, which began operating in early 2015, providing 250 acre-feet/year (223,000 gallons/day), about 35% of the town’s fresh water needs.

Other desalination projects in California include:

  • The Posiedon Water seawater desalination plant in Carlsbad, CA, which is expected to have a capacity of 56,050 acre-feet/year (50,000,000 gallons/day) after it is completed in November 2015. This plant will meet about 7% of San Diego county’s fresh water needs.

Carlsbad-Desalineation-Plant-Site

Source: San Diego Water Authority

  • The Posiedon Water seawater desalination project in Huntington Beach, which is in the final phase of permitting and is expected to be completed in 2018, also with a capacity of 50,000,000 gallons/day.
  • The Doheny Ocean Desalination Project in south Orange County, which is planned to deliver 16,816 acre-feet/year (15,000,000 gallons/day), with a target completion date of 2020.
  • The city-owned Charles E. Meyer desalination plant in Santa Barbara, which was mothballed in 1992 after a short test period. Plans are being prepared to modernize and re-start this plant, which has a licensed capacity is 7,500 acre-feet/year ( 6,691,0000 gallons/day) and can meet about 30% of the city’s fresh water needs.
  • Four new desalination plants on the Monterey peninsula are in the planning stage:
    • Marina Coast, Armstrong Ranch brackish water desalination plant: 2,700 acre-feet/year (2,409,000 gallons/day)
    • California American Water, Monterey Peninsula Water Supply seawater desalination plant: 9,750 acre-feet/year (8,698,000 gallons/day)
    • Deepwater Desalination, Moss Landing seawater desalination plant: 10,000 acre-feet/year (8,922,000 gallons/day)
    • People’s Project: Moss Landing seawater desalination plant: 13,400 acre-feet/year (11,950,0000 gallons/day)

You can find more details on California desalination plants at the following links:

The Forbes article:

http://www.forbes.com/sites/jamesconca/2015/06/09/californias-megadrought-nuclear-power-to-the-rescue/

The Diablo Canyon NPP seawater desalination plant (video):

http://www.sanluisobispo.com/2015/06/03/3663267_how-diablo-canyons-desalination.html?rh=1

Posiedon Water’s Carlsbad seawater desalination plant:

http://poseidonwater.com/our_projects/all_projects/carlsbad_project

Posiedon Water’s Huntington Beach seawater desalination plant:

http://poseidonwater.com/our_projects/all_projects/huntington_beach_project

Santa Barbara’s Charles E. Meyer seawater desalination plant:

http://www.latimes.com/local/california/la-me-santa-barbara-desal-20150303-story.html

The several Monterey peninsula desalination projects:

http://www.montereycountyweekly.com/news/local_news/marina-coast-gets-gangbusters-for-its-own-desal-plant-to/article_10f8adc4-c82b-11e4-a7f6-9b88d4a73155.html

The Cambria brackish water desalination plant:

http://www.sanluisobispo.com/2014/11/08/3339786/cambria-csd-water-treatment-plant.html

Catalina seawater desalination plant:

https://www.sce.com/wps/wcm/connect/9b85bcbc-a87f-4cf1-8e42-008090ff30be/Catalina+Island+Fact+Sheets+FINAL_v2.pdf?MOD=AJPERES

Sand City Coastal (seawater) desalination plant:

http://www.water-technology.net/projects/sand-city-plant/

The Doheny Ocean (seawater) Desalination Project:

http://www.scwd.org/projects/oceandesal3.asp

20 December 2015 update

The sea water desalination plant in Carlsbad, CA was officially dedicated on 14 December 2015 in a public ceremony attended by more than 600 elected officials, community leaders and project partners.  Formerly known as the Poseidon desalination plant, the plant was officially named in honor of former Carlsbad Mayor, Claude ‘Bud’ Lewis. A 30-year Water Purchase Agreement is in place between the San Diego County Water Authority and Poseidon Water for the entire output of the plant, which started delivering water earlier in December.  This is the largest sea water desalination plant in the western hemisphere.

You can get more information at the home page for this plant at the following link:

http://carlsbaddesal.com

 

Alpha the Robot Visited San Diego in 1935

Earlier this year, the San Diego U-T newspaper started a series entitled, Balboa Park – 100 Memories, which, on 22 May 2015, presented an article on Alpha the robot, who visited San Diego in 1935 for exhibition during the 1934 – 35 California Pacific International Exposition. Alpha was the creation of British engineering professor Harry May and was first introduced in the U.K in 1932.

Alpha the Robot 1935 U-T

Image source: San Diego History Center, Electric Ivy

Alpha debuted in the U.S. with an appearance at Macy’s department store in New York City in 1934. The November 5, 1934 issue of Time magazine describes a demonstration of Alpha at Macy’s as follows:

 “Last week Alpha, the robot, made its first public appearance in the U. S. One of the most ingenious automatons ever contrived by man, a grim and gleaming monster 6 ft. 4 in. tall, the robot was brought to Manhattan by its owner-inventor-impresario, Professor Harry May of London, and installed on the fifth floor of R. H. Macy & Co.’s department store. Encased from head to foot in chromium-plated steel armor, Alpha sat on a specially constructed dais with its cumbrous feet securely bolted to the floor, stared impassively over the knot of newshawks and store officials waiting for the first demonstration. The creature had a great sullen slit of a mouth, vast protuberant eyes, shaggy curls of rolled metal. In one mailed fist Alpha clutched a revolver.”

Some details of Alpha’s operation were described in the February, 1934 issue of Practical Mechanics magazine, which you can read at the following link:

http://www.davidbuckley.net/DB/HistoryMakers/Alpha1932_files/PracticalMechanics/PracticalMechanics.htm

Practical Mechanics Feb34 cover

Image source: www/davidbuckley.net, see link above

As discussed in the recent U-T, Balboa Park – 100 Memories article, Alpha the robot was exhibited in the Palace of Science (now the Museum of Man) in Balboa Park. The article goes on to say:

 “The 2,000-pound, 6-foot steel giant stood up, sat down, smoked cigarettes, fired a gun and answered questions. Asked if he loved his wife, according to a Feb. 29, 1936, article in the San Diego Sun, Alpha replied, “I’ve a heart of steel. I don’t love nobody and nobody loves me.”

During the California Pacific International Exposition, a performer in a costume similar to Alpha the robot attempted to kidnap Zorine, Queen of the Nudists, from Zoro Garden, a sunken stone grotto originally designed as a nudist colony attraction for the Exposition, near what is now the Reuben H. Fleet Science Center.  Imagine that!

Alpha kidnaps Zorine

You can see a short interview with Alpha the robot at the following link:

http://en.savefrom.net/#url=http://youtube.com/watch?v=a9l9pt_Jzn8&utm_source=youtube.com&utm_medium=short_domains&utm_campaign=www.ssyoutube.com

Alpha the robot must have been very impressive for it’s time. To see what modern robots can do 80 years later, be sure to follow the 2015 DARPA Robotics Challenge (DRC) Finals to be held 5-6 June, 2015, at Fairplex in Pomona, Calif., outside of Los Angeles. Refer to my 23 March 2015 post for more information of the DRC Finals.

Kurzgesagt Explains the Fermi Paradox: Where are all the aliens?

Kurzgesagt (German for “in a nutshell“) is a Munich-based design studio with a distinctive perspective on design and animation in the fields of education, science and commerce. For more background information on Kurzgesagt, visit their website at:

http://kurzgesagt.org/profile/

Then, select “Projects” or “YouTube” on the menu on the left side of the screen to access their library of animated video briefings. The icons for some of your choices in the “Projects” menu are shown below. All project videos also are available on YouTube. I hope you enjoy these briefings.

Kurzgesagt1  The Fermi Paradox

Kurzgesagt2 Who Invented the Internet?

Kurzgesagt3  Time Explained

Kurzgesagt4 Is Nuclear Energy Good or Bad?

San Diego Bioprinter and Cosmetics Firm Team Up to Manufacture Human Skin

The 20 March 2015 Pete’s Lynx post, “Scalability of 3-D printing (additive manufacturing)”, addressed the use of 3-D printing to manufacture skin for treating burn victims, either by separately manufacturing skin for use in conventional grafts, or by directly printing new skin onto the burn wounds.

A new application for the use of manufactured human skin in cosmetics testing is being explored by San Diego bioprinting firm Organovo Holdings, Inc. and French cosmetics firm L’Oreal. This is the first potential application of this technology in the beauty industry, and it appears to offer an effective means to test new cosmetics and conduct other advanced research while complying with the 2013 European Union ban on animal testing.

The Organovo website is:

http://www.organovo.com

You can read the press release on the partnership between L’Oreal USA and Organovo to develop 3-D bioprinted skin tissue at the following link:

http://ir.organovo.com/news/press-releases/press-releases-details/2015/LOreal-USA-Announces-Research-Partnership-with-Organovo-to-Develop-3-D-Bioprinted-Skin-Tissue/default.aspx?_ga=1.173869475.1464967055.1432334566

The press release states that:

“…the collaboration will leverage Organovo’s proprietary NovoGen Bioprinting Platform and L’Oreal’s expertise in skin engineering to develop 3-D printed skin tissue for product evaluation and other areas of advanced research…… Organovo’s 3D bioprinting enables the reproducible, automated creation of living human tissues that mimic the form and function of native tissues in the body.”

Those of you who watch the BBC TV series Dr. Who may already see another application of this blend of bioprinting + cosmetics technology as a means for maintaining Lady Cassandra, who, after 708 plastic surgeries, has been reduced to a translucent piece of skin stretched across a frame.

Lady_Cassandra Source: Wikipedia

LightSail to Demonstrate the Feasibility of Solar Sail Technology for Future Spacecraft Propulsion

Light exerts a measurable pressure on solid objects. This was demonstrated in 1899 in an experiment conducted by Russian scientist Pyotr Nikolayevich Lebedev. This experiment also demonstrated that the pressure of light is twice as great on a reflective surface than on an absorbent surface. This is the basis for the solar sail concept for spacecraft propulsion.

Solar sailing  Source:  Planetary Society

The Japanese IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun) spacecraft launched on 20 May 2010 is the world’s first spacecraft to use solar sailing as its main propulsion. The square solar sail measured 14.14 meters (46.4 feet) along its edge, with a total area of 200 square meters (2,153 square feet). Thin-film solar cells in the sail provide electric power for spacecraft systems. IKAROS was launched as a secondary payload in conjunction with the Japanese Venus Climate Orbiter. The Japanese Aerospace Exploration Agency (JAXA) claims that acceleration and attitude control of IKAROS were demonstrated during the spacecraft’s flight toward Venus. The total velocity effect over the six-month flight to Venus was reported to be 100 m/s. IKAROS continued into solar orbit while its companion spacecraft entered orbit around Venus.

The Planetary Society conceived and is executing a crowd-funded project called LightSail to continue demonstrating the feasibility of solar sail technology. You can read more at their website:

http://sail.planetary.org

Packaged into a compact 3-unit “CubeSat” (about the size of a loaf of bread) for launch, the Planetary Society’s first LightSail spacecraft, LightSail A, hitched a ride into orbit on an Air Force Atlas V booster on 20 May 2015. The primary purpose of this first mission is to demonstrate that LightSail can deploy its 32 square meter (344 square foot) reflective Mylar solar sail properly in low Earth orbit.  Following launch and orbital checkout, the sail is expected to be deployed 28 days after launch. Thereafter, atmospheric drag will cause the orbit to decay.

LightSail A spacecraft Source: Planetary Society

You can read more about the first mission at the following link:

http://www.wired.com/2015/05/blasting-off-today-satellite-sails-sunbeams/?mbid=social_twitter&utm_source=howtogeek&utm_medium=email&utm_campaign=newsletter

In a second mission planned for 2016, LightSail B will be deployed into a higher orbit with the primary purpose of demonstrating propulsion and maneuverability. LightSail B will be similar to LightSail A, with the addition of a reaction wheel that will be used to control the orientation of the spacecraft relative to the Sun. This feature should allow the spacecraft to tack obliquely relative to the photon stream from the Sun, enabling orbital altitude and/or inclination to be changed.

You can find more information on solar sail physics and use of this technology at the following link:

http://en.wikipedia.org/wiki/Solar_sail

 29 May 2015, Update 1:

After launch, the LightSail A spacecraft’s computer was disabled by a software problem and the spacecraft lost communications with Earth.  Reset commands have failed to reboot the computer.  The computer and communications problems occurred before the solar sail was scheduled to be deployed.

31 May 2015, Update 2:

The LightSail A computer successfully rebooted and communications between the spacecraft and the ground station have been restored.  The plan is for ground controllers to install a software fix, and then continue the mission.

9 June 2015, Update 3:

The Planetary Society announced that the LightSail A spacecraft successfully completed its primary objective of deploying a solar sail in low-Earth orbit.

20150609_ls-a-sails-out_f840  Source: Planetary Society

Read their detailed announcement at the following link:

http://www.planetary.org/blogs/jason-davis/2015/20150609-lightsail-test-mission-success.html

Graphene Applications and Development Status

Graphene is a 2-dimensional (one atom thick) structure of graphite, composed of carbon atoms tightly bonded together in a hexagonal lattice. These physical properties give graphene an extraordinary combination of high strength, low weight, high thermal and electrical conductivity.

image   Source: Gizmag.com

The firm Graphena is a commercial graphene supplier. Their website is a good source of information regarding graphene technology. Basic graphene properties are explained at the following link:

http://www.graphenea.com/pages/graphene-properties#.VVHntHDXeK0

A description of expected graphene applications is at the following link:

http://www.graphenea.com/pages/graphene-uses-applications#.VVHcNHDXeK0

These potential applications include:

  • Biological engineering: bioelectric sensory devices, antibiotic / anti-cancer treatment, tissue regeneration
  • Optical electronics: rollable e-paper, flexible electronic components and displays
  • Ultrafiltration: water purification, desalination, biofuel manufacturing
  • Composite materials: higher-strength, lower-weight replacement for current carbon fiber composites in aircraft and other vehicle structures, body armor
  • Photovoltaic cells: cost-effective, high-efficiency replacement for silicon solar cells in current applications, and new applications for flexible PV cells such as window screens and installations on curved surfaces.
  • Energy storage: higher-capacity supercapacitors and batteries

A key limitation to developing graphene applications has been the relatively high cost of manufacturing graphene. Presently, chemical vapor deposition (CVD) is the process commonly used to manufacture high-quality graphene on a large scale. A breakthrough in lower-cost CVD manufacturing technology recently was announced by the firm Carbon Sciences, Inc. and the University of California Santa Barbara (UCSB). You can read more about this announcement at the following link:

http://www.globalenergyworld.com/mobile/news/16193/Carbon_Sciences_Announces_Successful_Production_of_High_Quality_Graphene.htm?

The era of industrial application of graphene appears to be a step closer to realization.

17 January 2019 Update:

At the 125thmeeting of the Lyncean Group of San Diego on 9 January 2019, Caltech professor Nai-Chang Yea provided an in-depth review of graphene technology in her presentation, “The Rise of Graphene: From Laboratory Curiosity to a Wonder Material for Science and Technology.”  You’ll find details of her presentation on the Lynceans Past Meetings webpage or at the following direct link:

https://lynceans.org/talk-125-1-9-19/

Graphene technology is advancing rapidly.  You’ll find additional information in the following recent articles:

  • Gibney, “Superconductivity with a twist,” Nature, Volume 565, 3 January 2019

https://www.nature.com/magazine-assets/d41586-018-07848-2/d41586-018-07848-2.pdf

  • Nicol, “What is Graphene? – Stronger than steel, thinner than paper, grapheme could be the future of tech,” Digital Trends, 15 November 2018

https://www.digitaltrends.com/cool-tech/what-is-graphene/

If you’re interested in even more news on graphene, check out the Graphine-info website here:

https://www.graphene-info.com/news

If you wish, you can sign up on this website for a free graphene newsletter.

World Federation of Great Towers

The tower is one of mankind’s oldest architectural accomplishments. The World Federation of Great Towers is an international association with 48 members in over 20 countries that exists to showcase the world’s great modern towers and celebrate the feats of architecture and engineering that led to their creation. You can examine many of the tallest buildings in the world at the following link:

http://www.great-towers.com/towers/

The following members of the World Federation of Great Towers were completed in the last decade include:

  • Oct 2005 – Spinnaker Tower, Portsmouth, NH, 170 m (558 ft) tall
  • Apr 2006 – Goryokaku Tower, Hokkaido, Japan, 107 m (351 ft) tall
  • Oct 2006 – Eureka Skydeck 88, Melbourne, Australia, 300 m (984 ft) tall (see photo below)
  • Oct 2007 – The Hague Tower, The Hague, Netherlands, 132 m (433 ft) tall
  • Jan 2010 – Burj Khalifa, Dubai, UAE, 828 m (2,716.5 ft) tall
  • Sep 2010 – Canton Tower, Guangzhou, China, 600 m (1,968 ft) tall
  • April 2011 – Henan Tower (Tower of Fortune), Zhengzhou, China, 388 m (1,273 ft) tall
  • May 2012 – The Shard, London, UK, 310 m (1,016 ft) tall

image Eureka Skydeck 88   Source: Melbourne Library

The World Federation of Great Towers membership does not include all of the very tall buildings in the world, such as the new One World Trade Center in New York City. You can find a listing of all of the world’s buildings that have a height exceeding 300 meters (984 feet) at the following link:

http://en.wikipedia.org/wiki/List_of_tallest_buildings_in_the_world

Sorting this list by date highlights the great number (72) of very tall buildings that have been completed in the past decade:

  • 2005:  2
  • 2006:  0
  • 2007:  5
  • 2008:  2
  • 2009:  5
  • 2010: 13
  • 2011: 8
  • 2012: 14
  • 2013:  7
  • 2014:  9
  • 2015:  7

There definitely is a building boom for giant skyscrapers.

22 May 2016 Update: Global Tall Building Database

Another source of information on skyscrapers is the Council on Tall Buildings and Urban Habitat (CTBUH). Their home page is at the following link:

http://www.ctbuh.org

From here, you can navigate to their Tall Buildings Information & Resources, including The Skyscraper Center, which contains the Global Tall Building Database. The direct link to the Skyscraper Center is:

http://skyscrapercenter.com

5 January 2019 Update:  Top 30 tallest buildings dynamic info-graphic

Ian Fisher (WawamuStats) created the following dynamic Info-graphic that compares the world’s top 30 tallest buildings ever built. Most of these buildings are located in China, UAE, or the United States.  The oldest of these buildings was completed in 1974 and the newest in 2018.  The Empire State Building is not among the top 30. Here’s the link to the dynamic Info-graphic:

https://www.youtube.com/watch?v=zCoEGFaDvjQ