Tag Archives: Aeromodeller II

What Do a Tidal Turbine and an Airship Have in Common?

Peter Lobner

Orbital Marine Power (https://orbitalmarine.com) is developing a large, moored tidal turbine, the O2, which they claim is the most powerful tidal turbine in the world. The O2 soon will be deployed at sea off the Orkney Islands, northeast of Scotland. 

Rendering of the O2 tidal turbine. Source: Orbital Marine Power
Side view of the O2 tidal turbine. Source: Orbital Marine Power

Key features of the O2 tidal turbine are:

  • 74 meter (243 ft) tubular steel hull with fore and aft mooring connections.
  • Hydraulically-actuated steel legs extending from the hull support the generator nacelles and rotors that are deployed underwater after the hull has been moored using a four-point mooring system.
  • Two 20 meter (65.6 ft) diameter, 2-bladed rotors give the O2 more than 600 m2 (6,458 ft2) of swept area to capture flowing tidal energy.
  • Blade pitch control enables bi-directional operation of the turbines with the hull in a fixed moored position (the hull doesn’t swing with the tide).
  • Each rotor drives a 1 MWe generator housed in the nacelle.
  • Power is delivered to shore by a submarine cable.

Here are three short videos that will give you a quick introduction to this remarkable machine:

O2 tidal turbine being moved in the shipyard in March 2021, prior to launch. The rotors are not yet attached to the nacelles. Source: Orbital Marine Power video screenshot
O2 with the rotors attached in the water, under tow. Source: Orbital Marine Power

If the O2 demonstration proves to be successful, Orbital Marine Power plans to develop and deploy larger tidal turbines in the future.

So, what does the O2 tidal turbine have in common with an airship?  The Aeromodeller II airship design developed by Belgian engineer Lieven Standaert implements an airborne mooring as a means to generate power using two wind turbines while remaining aloft.

Ground anchor enables propellers to function as wind turbines for power generation while tethered.
Source: Inhabit.com
Rendering of Aeromodeller II shown tethered. Source: www.aeromodeller2.be

Both the O2 tidal turbine and the Aeromodeller II airship are buoyant vehicles in their respective media (water and air, respectively) and both are designed to extract power from that medium while moored (or tethered).  Important differences are that the O2 tidal turbine is permanently moored and supplies power to users on land.  The Aeromodeller II drops its anchor periodically to recharge its own power system while tethered and then raises its anchor to continue its journey. You’ll find more information on the Aeromodeller II airship in my separate article here:  https://lynceans.org/wp-content/uploads/2019/08/Aeromodeller-II-converted.pdf

Modern Airships – Part 3

Peter Lobner

1. Introduction

“Modern Airships” is a three-part document that contains an overview of modern airship technology in Part 1 and links in Parts 1, 2 and 3 to 95 individual articles on historic and advanced airship designs. This is Part 3.  Here are the links to the other two parts:

You’ll find a consolidated Table of Contents for all three parts at the following link.  This should help you navigate the large volume of material in the three documents.

Modern Airships – Part 3 begins with a summary table identifying the airship concepts addressed in this part, and concludes by providing links to 32 individual articles on these airship concepts. A downloadable copy of Part 3 is available here:

If you have any comments or wish to identify errors in this document, please send me an e-mail to:  PL31416@cox.net.

I hope you’ll find the Modern Airships series to be informative, useful, and different from any other single document on this subject.

Best regards,

Peter Lobner

August 2019

2. Specific airship concepts in Part 3

The airships described in Part 3 are relatively exotic concepts in comparison to the heavy-lift cargo airships that dominate Parts 1 and 2.  Many of the airship concepts in Part 3 are designed for operation with very low or no carbon emissions.  I’ve grouped these airship concepts based on their applications rather than on their design / type because sometimes those details are difficult to determine when few graphics and limited descriptions are available.  A few of these airships look good as concepts, but may be impossible to build.  Nonetheless, all of these relatively exotic concepts point toward an airship future that will benefit from the great creativity expressed by these designers.

The airship design concepts reviewed in Part 3 are summarized in the following set of tables.  Except for a few sub-scale models, none of these airship concepts have flown.  Links to individual articles on these airships are provided at the end of this document.

3. Links to the individual articles

The following links will take you to 32 individual articles.  Note that the Avalon Airships article addresses all three of their airship design concepts, which are listed separately in the above tables and in the following index.

Cargo & multi-purpose airships

Mass transportation airships:

Flying hotel airships:

Touring airships:

Flying yacht airships:

Remotely-piloted special purpose airship:

Personal airships:

Thermal (hot air) airships:

Other novel designs: