Category Archives: All Posts

Two US Supercomputers are Ranked Fastest in the World

Peter Lobner

In previous posts on 24 May 2015 and 28 June 2016, I reported on the TOP500 rankings of the world’s supercomputers.

In June 2013, China’s Tianhe-2 supercomputer at the National Supercomputer Center in Guangzho topped this this worldwide ranking with an Rmax Linpack score of 33 petaflops (1 petaflops = 1015  floating-point operations per second) and retained the first place position for two years. In June 2016, the new leader was another Chinese supercomputer, the Sunway TaihuLight at the National Supercomputer Center in Wuxi. TaihuLight delivered an Rmax Linpack score of 93 petaflops and remained at the top of the worldwide ranking for two years, until it was eclipsed in June 2018 by the US Summit supercomputer, then with an Rmax rating of 122.3 petaflops.

In the latest TOP500 ranking, the new leaders are two US supercomputers:  Summit (#1) and Sierra (#2).

Summit supercomputer.  Source: NVIDIA

The IBM Summit improved its past Linpack score to achieve an Rmax of 143.5 petaflops in the current ranking.  Summit is located at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) in Tennessee.

  • 2,397,824 cores
  • 873 megawatts peak power

Sierra supercomputer. Source:  Lawrence Livermore National Laboratory / Randy Wong

The IBM Sierra also improved its past Linpack score to achieve an Rmax of 94.64 petaflops / second and move into second place, marginally ahead of China’s TaihuLight.  Sierra is located at the DOE Lawrence Livermore National Laboratory (LLNL) in California.

  • 1,572,480 cores
  • 438 megawatts peak power

The Summit and Sierra supercomputer cores are IBM POWER9 central processing units (CPUs) and NVIDIA V100 graphic processing units (GPUs).   NVIDIA claims that its GPUs are delivering 95% of Summit’s performance. Both supercomputers use a Linux operating system.

China’s Sunway TaihuLight was ranked 3rd, and Tianhe-2A was ranked 4th.  A total of five DOE supercomputers were in the top 10 positions.

You’ll find the complete 52ndedition (November 2018) TOP500 ranking here:

https://www.top500.org/lists/2018/11/

20 February 2019 Update:  Los Alamos National Laboratory (LANL) plans new supercomputer

The TOP500 ranking places LANL’s Trinity supercomputer (a Cray XC40) as the #6 fastest supercomputer in the world, but its performance (Rmax of 20.16 petaflops) is far below that of the #1 Summit supercomputer at Oak Ridge national Laboratory and the #2 Sierra supercomputer at Lawrence Livermore National Laboratory.

Source:  LANL

Not to be outdone, LANL issued a request for proposal (RFP) in February 2019 for a new supercomputer, to be named Crossroads, to support the lab’s missions for the National Nuclear Security Administration (NNSA).  A LANL spokesperson reported that, “High performance computing across the NNSA complex is used to assure the safety, security and effectiveness of the U.S. nuclear deterrent; to analyze and predict the performance, safety, and reliability of nuclear weapons and certify their functionality.”  Responses to the RFP are due by 18 March 2019.  Crossroads is expected to go online in 2021.

2018 Nobel Prize in Physics

Peter Lobner

On 2 October 2018, the Royal Swedish Academy of Sciences announced the winners of the 2018 Nobel Prize in Physics. Arthur Ashkin (US) shares this Nobel Prize with Gérard Mourou (France) and Donna Strickland (Canada) for their “groundbreaking inventions in the field of laser physics.”

Arthur Ashkin’s award was “for the optical tweezers and their application to biological systems.” This is a technique developed by Ashkin in the late 1960s (first published in 1970) using laser beam(s) to create a force trap that can be used to physically hold and move microscopic objects (from atoms and molecules to living cells).  The technique now is widely used in studying a variety of biological systems, with applications such as cell sorting and bio-molecular assay.

You’ll find a detailed briefing entitled, “Optical Tweezers – Working Principles and Applications,” here:

http://www.phys.sinica.edu.tw/TIGP-NANO/Course/2008_Fall/classnote/NBP_Optical%20Tweezers_Wen-Tau%20Juan.pdf

Arthur Ashkin. Source: laserfest.org

Arthur Ashkin is a researcher at Bell Laboratories in New Jersey.  At 96, he the oldest person to be awarded a Nobel Prize.

The award to Mourou and Strickland was “for their method of generating high-intensity, ultra-short optical pulses.” They developed a technique in the mid-1980s called “chirped pulse amplification” (CPA) that is used to produce very short duration laser pulses of very high intensity.  CPA is applied today in laser micromachining, surgery, medicine, and in fundamental science studies.

You’ll find a brief tutorial entitled, “Chirped-Pulse Amplification Ultrahigh peak power production from compact short-pulse laser systems,” here:

https://pdfs.semanticscholar.org/1c96/a800faaa341d9719a6ca3fbb7ccff9ff9419.pdf

  Gérard Mourou. Source: American Physical Society (APS).  Donna Strickland. Source: University of Waterloo

Gérard Mourou is the director of the Laboratoire d’Optique Appliquee at the ENSTA ParisTech (École nationale supérieure de techniques avancées).  He was Donna Strickland’s PhD advisor.

Donna Strickland is an associate professor in the Physics and Astronomy Department of the University of Waterloo, Canada (about 90 km west of Toronto).  She is the first female Physics laureate in 55 years. The preceding female Physics laureates were:

  • In 1963, Maria Goeppert-Mayer was recognized for her work on the structure of atomic nuclei (shared with J. Hans D. Jensen and Eugene Wigner).
  • In 1903, Marie Curie was recognized for her pioneering work on nuclear radiation phemomena (shared with Pierre Curie and Henri Becquerel).

You can read the press release from the Royal Swedish Academy of Sciences for the 2018 Nobel Prize in Physics here:

https://www.nobelprize.org/uploads/2018/10/press-physics2018.pdf

Congratulations to the 2018 Nobel Physics laureates!

Sputnik 1 Boosted Support for Science, Engineering and Mathematics Education, but it Didn’t Last

Peter Lobner

Sputnik 1 was launched on 4 October 1957 by the Soviet Union and became the first man-made object to be placed into Earth orbit.  See my 4 October 2017 post discussing the 60th anniversary of this event.

The launch of Sputnik 1, and the subsequent launches of Sputnik 2 on 4 October 1957 and Sputnik 3 on 15 May 1958, prompted calls for more technical education in the U.S. One reaction was the National Defense Education Act (NDEA) passed by Congress and signed by President Dwight Eisenhower on 2 September 1958.  A primary goal of NDEA was to help align the nation’s educational systems to better meet the nation’s security needs, particularly in the areas of science, engineering and mathematics, where the U.S. was being challenged by the Soviet Union.

You can read more on the NDEA here:

https://www.britannica.com/topic/National-Defense-Education-Act

It’s ironic that today, more than 60 years after Sputnik 1 was launched, our nation’s educational system is still trying to figure out how to deliver science, technology, engineering and mathematics education, now under the popular banner “STEM”  (or “STEAM”, so the Arts don’t feel left out).

As I discussed in my 13 December 2016 post, “The PISA 2015 Report Provides an Insightful International Comparison of U.S. High School Student Performance,”the U.S. was ranked 40thin math, 25thin science, and 24thin reading among 73 international educational systems.  PISA 2015 provided strong evidence that students in many other nations are better prepared in science and math than their peers in the U.S.  You can read that post here:

https://lynceans.org/all-posts/the-pisa-2015-report-provides-an-insightful-international-comparison-of-u-s-high-school-student-performance/

The National Academies Press (NAP) recently (2018) published two reports of consensus studies concerning the delivery of STEM education and a framework for assessing the status and quality of that education.  The first is entitled, “Indicators for Monitoring Undergraduate STEM Education.”

    Source:  NAP

NAP describes this report as follows:

“Science, technology, engineering and mathematics (STEM) professionals generate a stream of scientific discoveries and technological innovations that fuel job creation and national economic growth. Ensuring a robust supply of these professionals is critical for sustaining growth and creating jobs growth at a time of intense global competition. Undergraduate STEM education prepares the STEM professionals of today and those of tomorrow, while also helping all students develop knowledge and skills they can draw on in a variety of occupations and as individual citizens. However, many capable students intending to major in STEM later switch to another field or drop out of higher education altogether, partly because of documented weaknesses in STEM teaching, learning and student supports. Improving undergraduate STEM education to address these weaknesses is a national imperative.

Many initiatives are now underway to improve the quality of undergraduate STEM teaching and learning. Some focus on the national level, others involve multi-institution collaborations, and others take place on individual campuses. At present, however, policymakers and the public do not know whether these various initiatives are accomplishing their goals and leading to nationwide improvement in undergraduate STEM education.

Indicators for Monitoring Undergraduate STEM Education outlines a framework and a set of indicators that document the status and quality of undergraduate STEM education at the national level over multiple years. It also indicates areas where additional research is needed in order to develop appropriate measures. This publication will be valuable to government agencies that make investments in higher education, institutions of higher education, private funders of higher education programs, and industry stakeholders. It will also be of interest to researchers who study higher education.”

You can download this report here:

https://www.nap.edu/catalog/24943/indicators-for-monitoring-undergraduate-stem-education

The second report is entitled, “Graduate STEM Education for the 21stCentury.”

    Source:  NAP

NAP describes this report as follows:

“The U.S. system of graduate education in science, technology, engineering, and mathematics (STEM) has served the nation and its science and engineering enterprise extremely well. Over the course of their education, graduate students become involved in advancing the frontiers of discovery, as well as in making significant contributions to the growth of the U.S. economy, its national security, and the health and well being of its people. However, continuous, dramatic innovations in research methods and technologies, changes in the nature and availability of work, shifts in demographics, and expansions in the scope of occupations needing STEM expertise raise questions about how well the current STEM graduate education system is meeting the full array of 21st century needs. Indeed, recent surveys of employers and graduates and studies of graduate education suggest that many graduate programs do not adequately prepare students to translate their knowledge into impact in multiple careers.

Graduate STEM Education for the 21st Century examines the current state of U.S. graduate STEM education. This report explores how the system might best respond to ongoing developments in the conduct of research on evidence-based teaching practices and in the needs and interests of its students and the broader society it seeks to serve. This will be an essential resource for the primary stakeholders in the U.S. STEM enterprise, including federal and state policymakers, public and private funders, institutions of higher education, their administrators and faculty, leaders in business and industry, and the students the system is intended to educate.”

You can download this report here:

https://www.nap.edu/catalog/25038/graduate-stem-education-for-the-21st-century

Hopefully, today’s investments in STEM education will yield tangible results that will help strengthen the position of the U.S. among the very broad field of international competitors vying for a piece of, or dominance in, various segments of the modern technology market.

Marine Nuclear Power: 1939 – 2018

Peter Lobner

In 2015, I compiled the first edition of a resource document to support a presentation I made in August 2015 to The Lyncean Group of San Diego (www.lynceans.org) commemorating the 60thanniversary of the world’s first “underway on nuclear power” by USS Nautilus on 17 January 1955.  That presentation to the Lyncean Group, “60 years of Marine Nuclear Power: 1955 –2015,” was my attempt to tell a complex story, starting from the early origins of the US Navy’s interest in marine nuclear propulsion in 1939, resetting the clock on 17 January 1955 with USS Nautilus’ historic first voyage, and then tracing the development and exploitation of marine nuclear power over the next 60 years in a remarkable variety of military and civilian vessels created by eight nations.

Here’s a quick overview of worldwide marine nuclear in 2018.

Source: two charts by author

In July 2018, I finished a complete update of the resource document and changed the title to, “Marine Nuclear Power: 1939 –2018.”  Due to its present size (over 2,100 pages), the resource document now consists of the following parts, all formatted as slide presentations:

  • Part 1: Introduction
  • Part 2A: United States – Submarines
  • Part 2B: United States – Surface Ships
  • Part 3A: Russia – Submarines
  • Part 3B: Russia – Surface Ships & Non-propulsion Marine Nuclear Applications
  • Part 4: Europe & Canada
  • Part 5: China, India, Japan and Other Nations
  • Part 6: Arctic Operations

The original 2015 resource document and this updated set of documents were compiled from unclassified, open sources in the public domain.

I acknowledge the great amount of work done by others who have published material in print or posted information on the internet pertaining to international marine nuclear propulsion programs, naval and civilian nuclear powered vessels, naval weapons systems, and other marine nuclear applications.  My resource document contains a great deal of graphics from many sources.  Throughout the document, I have identified the sources for these graphics.

You can access all parts of Marine Nuclear Power: 1939 – 2018 here:

Marine Nuclear Power 1939 – 2018_Part 1_Introduction

Marine Nuclear Power 1939 – 2018_Part 2A_USA_submarines

Marine Nuclear Power 1939 – 2018_Part 2B_USA_surface ships

Marine Nuclear Power 1939 – 2018_Part 3A_R1_Russia_submarines

Marine Nuclear Power 1939 – 2018_Part 3B_R1_Russia_surface ships & non-propulsion apps

Marine Nuclear Power 1939 – 2018_Part 4_Europe & Canada

Marine Nuclear Power 1939 – 2018_Part 5_China-India-Japan & Others

Marine Nuclear Power 1939 – 2018_Part 6 R1_Arctic marine nuclear

I hope you find this resource document informative, useful, and different from any other single document on this subject.  Below is an outline to help you navigate through the document.

Outline of Marine Nuclear Power:  1939 – 2018.

Part 1: Introduction

  • Quick look:  Then and now
  • State-of-the-art in 1955
  • Marine nuclear propulsion system basics
  • Timeline
    • Timeline highlights
    • Decade-by-decade
  • Effects of nuclear weapons and missile treaties & conventions on the composition and armament of naval fleets
  • Prospects for 2018 – 2030

Part 2A: United States – Submarines

  • Timeline for development of marine nuclear power in the US
  • US current nuclear vessel fleet
  • US naval nuclear infrastructure
  • Use of highly-enriched uranium (HEU) in US naval reactors
  • US submarine reactors and prototype facilities
  • US Navy nuclear-powered submarines
    • Nuclear-powered fast attack submarines (SSN)
      • Submarine-launched torpedoes, anti-submarine missiles & mines
      • Systems to augment submarine operational capabilities
    • Nuclear-powered strategic ballistic missile submarines (SSBN)
      • Submarine-launched strategic ballistic missiles (SLBMs)
    • Nuclear-powered guided missile submarines (SSGN)
      • Cruise missiles and other tactical guided missiles
    • Nuclear-powered special operations submarines

Part 2B: United States – Surface Ships

  • US naval surface ship reactors & prototype facilities
  • US Navy nuclear-powered surface ships
    • Evolution of the US nuclear-powered surface fleet
    • Nuclear-powered guided missile cruisers (CGN)
      • CGN tactical weapons
    • Nuclear-powered aircraft carriers (CVN)
      • Carrier strike group (CSG) & carrier air wing composition
  • Naval nuclear vessel decommissioning and nuclear waste management
  • US civilian marine nuclear vessels and reactors
    • Operational & planned civilian marine vessels and their reactors
    • Other US civilian marine reactor designs
  • Radioisotope Thermoelectric Generator (RTG) marine applications
  • US marine nuclear power current trends

Part 3A: Russia – Submarines

  • The beginning of the Soviet / Russian marine nuclear power program
  • Russian current nuclear vessel fleet.
  • Russian marine nuclear reactor & fuel-cycle infrastructure
  • Russian nuclear vessel design, construction & life-cycle infrastructure
  • Russian naval nuclear infrastructure
  • Russian nuclear-powered submarines
    • Submarine reactors
    • Nuclear-powered fast attack submarines (SSN)
      • Submarine-launched torpedoes & anti-submarine missiles
    • Strategic ballistic missile submarines (SSB & SSBN)
      • Submarine-launched ballistic missiles (SLBM)
    • Cruise missile submarines (SSG & SSGN).
      • Cruise missiles
    • Nuclear-powered special operations subs & strategic torpedoes
    • Other special-purpose nuclear-powered subs
    • Examples of un-built nuclear submarine projects

Part 3B: Russia – Surface Ships & Non-propulsion Marine Nuclear Applications

  • Russian nuclear-powered surface ships
    • Surface ship reactors
    • Nuclear-powered icebreakers
    • Nuclear-powered naval surface ships
      • Nuclear-powered guided missile cruisers
      • Nuclear-powered command ship
      • Nuclear-powered aircraft carrier
      • Nuclear-powered multi-purpose destroyer
  • Russian non-propulsion marine nuclear applications
    • Small reactors for non-propulsion marine nuclear applications
    • Floating nuclear power plants (FNPP)
    • Transportable reactor units (TRU)
    • Arctic seabed applications for marine nuclear power
    • Radioisotope Thermoelectric Generators (RTG)
  • Marine nuclear decommissioning and environmental cleanup
  • Russian marine nuclear power current trends

Part 4: Europe & Canada

  • Nations that operate or have operated nuclear vessels
    • United Kingdom
      • The beginning of the UK marine nuclear power program
      • UK current nuclear vessel fleet
      • UK naval nuclear infrastructure
      • UK naval nuclear reactors
      • UK Royal Navy nuclear-powered submarines
        • Nuclear-powered fast attack submarines (SSN)
          • Submarine-launched tactical weapons
        • Nuclear-powered strategic ballistic missile submarines (SSBN)
          • Submarine-launched ballistic missiles (SLBM)
      • UK disposition of decommissioned nuclear submarines
      • UK nuclear surface ship and marine reactor concepts
      • UK marine nuclear power current trends
    • France
      • The beginning of the French marine nuclear power program
      • French current nuclear vessel fleet
      • French naval nuclear infrastructure
      • French naval nuclear reactors
      • French naval nuclear vessels
        • Nuclear-powered strategic ballistic missile submarines (SNLE)
          • Submarine-launched ballistic missiles (MSBS)
        • Nuclear-powered fast attack submarines (SNA)
          • Submarine-launched tactical weapons
        • Nuclear-powered aircraft carrier
      • French disposition of decommissioned nuclear submarines
      • French non-propulsion marine reactor applications
      • French marine nuclear power current trends
    • Germany
  • Other nations with an interest in marine nuclear power technology
    • Italy
    • Sweden
    • Netherlands
    • Canada

Part 5: China, India, Japan and Other Nations

  • Nations that have operated nuclear vessels
    • China
      • The beginning of China’s marine nuclear power program
      • China’s current nuclear vessel fleet
      • China’s naval nuclear infrastructure
      • China’s nuclear vessels
        • Nuclear-powered fast attack submarines (SSNs)
          • Submarine-launched tactical weapons
        • Nuclear-powered strategic ballistic missile subs (SSBNs)
          • Submarine-launched ballistic missiles (SLBMs)
        • Floating nuclear power stations
        • Nuclear-powered surface ships
      • China’s decommissioned nuclear submarine status
      • China’s marine nuclear power current trends
    • India
      • The beginning of India’s marine nuclear power program
      • India’s current nuclear vessel fleet
      • India’s naval nuclear infrastructure
      • India’s nuclear-powered submarines
        • Nuclear-powered fast attack submarines (SSNs)
          • Submarine-launched tactical weapons
        • Nuclear-powered strategic ballistic missile submarines (SSBNs)
          • Submarine-launched ballistic missiles (SLBM).
      • India’s marine nuclear power current trends
    • Japan
  • Other nations with an interest in marine nuclear power technology
    • Brazil
    • North Korea
    • Pakistan
    • Iran
    • Israel
    • Australia

Part 6: Arctic Operations

  • Rationale for marine nuclear power in the Arctic
  • Orientation to the Arctic region
  • US Arctic policy
  • Dream of the Arctic submarine
  • US marine nuclear Arctic operations
  • UK marine nuclear Arctic operations
  • Canada marine nuclear ambitions
  • Russian marine nuclear Arctic operations
    • Russian non-propulsion marine nuclear Arctic applications
  • China’s marine nuclear ambitions
  • Current trends in marine nuclear Arctic operations

Periodic updates:

  • Parts 3A and 3B, Revision 1, were posted in October 2018
  • Part 6, Revision 1, was posted in February 2019

Visitors From Outside our Solar System May be More Common Than We Expected

Peter Lobner

No!  This is not a story about UFOs.  On 19 October 2017, astronomers using the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1)in Hawaii made the first detection of an interstellar object passing through our solar system.  PanSTARRS 1 uses a Moving Object Processing System (MOPS) that is designed to detect fast moving objects in the vicinity of the Earth as well as those moving as slowly as the fastest proper motion stars.  The original goal of  the PanSTARRS project, which began observations in 2007, was to detect objects 100 times fainter than previous sky surveys, including 99% of the asteroids 300 meters (1,309 feet) or larger that come near Earth’s orbit.

NASA reported: “Rob Weryk, a postdoctoral researcher at the University of Hawaii Institute for Astronomy, was first to identify the moving object and submit it to the Minor Planet Center. Weryk subsequently searched the Pan-STARRS image archive and found it also was in images taken the previous night, but was not initially identified by the moving object processing.”

Pan-STARRS1 on Haleakala, Hawaii.  Source: https://panstarrs.stsci.edu

You’ll find a description of PanSTARRS 1 here;

https://panstarrs.stsci.edu/attachments/metcalfe_nam2015.pdf

The PanSTARRS1 MOPS is described in more detail here.

https://amostech.com/TechnicalPapers/2009/Astronomy/Denneau.pdf

The interstellar object discovered by Pan-STARRS1 was designated Asteroid  1I/2017 U1, and later was named Oumuamua, which means “a messenger from afar arriving first” in Hawaiian.  The red-hued object has a highly-elongated  shape (cigar-shaped) with a length of about a quarter mile (1,320 feet, 402 meters) and a diameter of  about 120 feet (40 meters).  Oumuamua was unlike any asteroid or comet previously observed in our solar system.

Artist’s concept of  Oumuamua. Source: European Southern Observatory/M. Kornmesser

Before its detection by PanSTARRS1, Oumuamua had entered our solar system and made its closest approach to the Sun on 19 September 2017, reaching a speed of about 196,000 mph (315,400 km/h).  From analysis of its trajectory, astronomers determined that Oumuamua most likely came from outside our solar system.  On its outbound trajectory, it was moving fast enough to escape the Sun’s gravitational field and break free of the solar system, never to return.

Oumuamua’s trajectory through our solar system. Source: NASA/JPL-Caltech

You’ll find a NASA/JPL-Caltech animation of Oumuamua’s trajectory here:

https://www.nasa.gov/feature/jpl/small-asteroid-or-comet-visits-from-beyond-the-solar-system

The European Space Agency (ESA) reported the following:

  • Oumuamua is dense, possibly rocky or with high metal content, lacks significant amounts of water or ice, and that its surface is now dark and reddened due to the effects of irradiation from cosmic rays over millions of years….it is completely inert, without the faintest hint of dust around it.
  • Preliminary orbital calculations suggested that the object had come from the approximate direction of the bright star Vega, in the northern constellation of Lyra. However, even travelling at a breakneck speed of about 95,000 kilometers/hour (59,000 mph), it took so long for the interstellar object to make the journey to our Solar System that Vega was not near that position when the asteroid was there about 300,000 years ago. Oumuamua may well have been wandering through the Milky Way, unattached to any star system, for hundreds of millions of years before its chance encounter with the Solar System.

You can read the ESA report here:

https://www.eso.org/public/news/eso1737/

The Breakthrough Listen initiative reported that the Green Bank Telescope in West Virginia detected no evidence of artificial signals emanating from the object.

To the disappointment of science fiction fans, all observations were consistent with Oumuamua being a natural object, and not a derelict spaceship, like the Battlestar Galactica.

Source: https://abagond.wordpress.com/2017/11/25/oumuamua/

David  Clery’s 21 May 2018 article, “This asteroid came from another solar system—and it’s here to stay,” describes the 2014 discovery and recent analysis of an object in our solar that is in a retrograde, heliocentric orbit at approximately the distance of Jupiter from the Sun (483.8 million miles / 778.6 million km).  The asteroid, identified as 2015 BZ509, is traveling around our solar system in the opposite directions of almost everything else in an orbit with unusual elongation and inclination to the plane of the solar system.  The recent analysis indicates that this is a stable orbit, and not a fly-by trajectory through our solar system like the brief visit of Oumuamua.

You can read David Clery’s article on the Science website here:

http://www.sciencemag.org/news/2018/05/asteroid-came-another-solar-system-and-it-s-here-stay?utm_campaign=news_daily_2018-05-21&et_rid=215579562&et_cid=2065701

The original paper by F. Namouni and M H M Morais, “An interstellar origin for Jupiter’s retrograde co-orbital asteroid,”was published on 21 May 2018 in the Monthly Notices of the Royal Astronomical Society.  The paper describes the analysis of the orbital parameters that that led to the conclusion the asteroid 2015 BZ509 was in a stable orbit.  The authors reported:

“Asteroid (514107) 2015 BZ509 was discovered recently in Jupiter’s co-orbital region with a retrograde motion around the Sun. The known chaotic dynamics of the outer Solar system have so far precluded the identification of its origin. Here, we perform a high-resolution statistical search for stable orbits and show that asteroid (514107) 2015 BZ509 has been in its current orbital state since the formation of the Solar system. This result indicates that (514107) 2015 BZ509 was captured from the interstellar medium 4.5 billion years in the past as planet formation models cannot produce such a primordial large-inclination orbit with the planets on nearly coplanar orbits interacting with a coplanar debris disc that must produce the low-inclination small-body reservoirs of the Solar system such as the asteroid and Kuiper belts. This result also implies that more extrasolar asteroids are currently present in the Solar system on nearly polar orbits.”

You can read the full paper here.

https://academic.oup.com/mnrasl/article/477/1/L117/4996014

Source: Screenshot from animation of 2015 BZ509 orbit created by the Large Binocular Telescope Observatory

You can view a short animation created by the Large Binocular Telescope Observatory to illustrate the dynamics of the unusual retrograde orbit of 2015 BZ509 here.

https://www.youtube.com/watch?v=7_QbYX4jTrI

It’s an intriguing prospect that there are more extrasolar objects in stable orbits around our Sun.  Could one of them be the elusive Planet 9?  For an update on the search for Planet 9, see the 21 May 2018 article by Elizabeth Howell, “Weird Space Rock Provides More Evidence for Mysterious ‘Planet Nine’,” which is on the Space.com website at the following link:

https://www.space.com/40642-space-rock-generates-planet-nine-excitement.html

The potential orbit of Planet 9, illustrated with the existing orbit of several trans-Neptunian objects (TNOs).Source: R. Hurt/JPL-Caltech

You Need to Know About Russia’s Main Directorate of Deep-Sea Research (GUGI)

Peter Lobner

The Main Directorate of Deep-Sea Research, also known as GUGI and Military Unit 40056, is an organizational structure within the Russian Ministry  of Defense that is separate from the Russian Navy.  The Head of GUGI is Vice-Admiral Aleksei Burilichev, Hero of Russia.

Source. Adapted from Ministry of Defense of the Russian Federation, http://eng.mil.ru/en/index.htm

Vice-Admiral Aleksei Burilichev at the commissioning of GUGI oceanographic research vessel Yantar. Source: http://eng.mil.ru/

GUGI is responsible for fielding specialized submarines, oceanographic research ships, undersea drones and autonomous vehicles, sensor systems, and other undersea systems.   Today, GUGI operates the world’s largest fleet of covert manned deep-sea vessels. In mid-2018, that fleet consisted of eight very specialized nuclear-powered submarines.

There are six nuclear-powered, deep-diving, small submarines (“nuclear deep-sea stations”), each of which is capable of working at great depth (thousands of meters) for long periods of time.  These subs are believed to have diver lockout facilities to deploy divers at shallower depths.

  • One Project 1851 / 18510 Nelma (aka X-Ray) sub delivered in 1986; Length: 44 m (144.4 ft.); displacement about 529 tons submerged. This is the first and smallest of the Russian special operations nuclear-powered submarines.
  • Two Project 18511 Halibut (aka Paltus) subs delivered between 1994 – 95; Length: 55 m (180.4 ft.); displacement about 730 tons submerged.
  • Three Project 1910 Kashalot (aka Uniform) subs delivered between 1986 – 1991, but only two are operational in 2018; Length: 69 m (226.4 ft.); displacement about 1,580 tons submerged.
  • One Project 09851 Losharik (aka NORSUB-5) sub delivered in about 2003; Length: 74 m (242.8 ft.); displacement about 2,100 tons submerged.

The trend clearly is toward larger, and certainly more capable deep diving special operations submarines.  The larger subs have a crew complement of 25 – 35.

Kashalot notional cross-section diagram. Source: adapted from militaryrussia.ru

Kashalot notional diagram showing deployed positioning thrusters, landing legs and tools for working on the bottom. Source: http://nvs.rpf.ru/nvs/forum

The Russian small special operations subs may have been created in response to the U.S. Navy’s NR-1 small, deep-diving nuclear-powered submarine, which entered service in 1969.  NR-1 had a length of 45 meters (147.7 ft.) and a displacement of about 400 tons submerged, making it roughly comparable to the Project 1851 / 18510 Nelma . NR-1 was retired in 2008, leaving the U.S. with no counterpart to the Russian fleet of small, nuclear-powered special operations subs.

GUGI operates two nuclear-powered “motherships” (PLA carriers) that can transport one of the smaller nuclear deep-sea stations to a distant site and provide support throughout the mission. The current two motherships started life as Delta III and Delta IV strategic ballistic missile submarines (SSBNs).  The original SSBN missile tubes were removed and the hulls were lengthened to create large midship special mission compartments with a docking facility on the bottom of the hull for one of the small, deep-diving submarines.  These motherships probably have a test depth of about 250 to 300 meters (820 to 984 feet).  They are believed to have diver lockout facilities for deploying divers.

General arrangement of a Russian mothership carrying a small special operations submarine.  Source:  http://gentleseas.blogspot.com/2015/08/russias-own-jimmy-carter-special-ops.html

Delta-IV mothership carrying Losharik.  Source: GlobalSecurity.org

The motherships also are believed capable of deploying and retrieving a variety of  autonomous underwater vehicles (AUVs), including the relatively large Harpsichord: Length: 6.5 m (21.3 ft.); Diameter 1 m (3.2 ft.); Weight: 3,700 kg (8,157 pounds).

Harpsichord-2R-PM. Source: http://vpk-news.ru/articles/30962

The following graphic shows a mothership carrying a small special operations sub  while operating with a Harpsichord AUV.

                       Source: https://russianmilitaryanalysis.wordpress.com/tag/9m730/

These nuclear submarines are operated by the 29th Special Submarine Squadron, which is based along with other GUGI vessels at Olenya Bay, in the Kola Peninsula on the coast of the Barents Sea.

Olenya Bay is near Murmansk.  Source: Google Maps

Russian naval facilities near Murmansk.  Source: https://commons.wikimedia.org

Mothership BS-136 Orenburg at Oleyna Bay.  Source: Source: http://www.air-defense.net/

The GUGI fleet provides deep ocean and Arctic operating capabilities that greatly exceed those of any other nation.  Potential missions include:

  • Conducting subsea surveys, mapping and sampling (i.e., to help validate Russia’s extended continental shelf claims in the Arctic; to map potential future targets such as seafloor cables)
  • Placing and/or retrieving items on the sea floor (i.e., retrieving military hardware, placing subsea power sources, power distribution systems and sonar arrays)
  • Maintaining military subsea equipment and systems
  • Conducting covert surveillance
  • Developing an operational capability to deploy the Poseidon strategic nuclear torpedo.
  • In time of war, attacking the subsea infrastructure of other nations in the open ocean or in the Arctic (i.e., cutting subsea internet cables, power cables or oil / gas pipelines)

Analysts at the firm Policy Exchange reported that the world’s undersea cable network comprises about 213 independent cable systems and 545,018 miles (877,121 km) of fiber-optic cable.  These undersea cable networks carry an estimated 97% of global communications and $10 trillion in daily financial transactions are transmitted by cables under the ocean.

Since about 2015, NATO has observed Russian vessels stepping up activities around undersea data cables in the North Atlantic. None are known to have been tapped or cut.  Selective attacks on this cable infrastructure could electronically isolate and severely damage the economy of individual countries or regions.  You’ll find a more detailed assessment on this matter in the 15 December 2017 BBC article, “Russia a ‘risk’ to undersea cables, Defence chief warns.”

http://www.bbc.com/news/uk-42362500

GUGI also is responsible for the development of the Poseidon (formerly known as Status-6 / Kanyon) strategic nuclear torpedo and the associated “carrier” submarines.

Poseidon, which was first revealed on Russian TV in November 2015,  is a large, nuclear-powered, autonomous underwater vehicle (AUV) that functionally is a giant, long-range torpedo.

 The Russian TV “reveal” of the Oceanic Multipurpose System Status-6 November 2015. Source: https://russianmilitaryanalysis.wordpress.com/tag/9m730/

It is capable of delivering a very large nuclear warhead (perhaps up to 100 MT) underwater to the immediate proximity of an enemy’s key economic and military facilities in coastal areas.  It is a weapon of unprecedented destructive power and it is not subject to any existing nuclear arms limitation treaties. However, its development would give Russia leverage in future nuclear arms limitation talks.

The immense physical size of the Poseidon strategic nuclear torpedo is evident in the size comparison chart below.

Source: http://www.hisutton.com/

The Bulava is the Russian submarine launched ballistic missile (SLBM) carried on Russia’s modern Borei-class SSBNs.  The UGST torpedo is representative of a typical torpedo launched from a 533 mm (21 inch) torpedo tube, which is found on the majority of submarines in the world.  An experimental submarine, the B-90 Sarov, appears to be the current testbed for the Poseidon strategic torpedo.  Russia is building other special submarines to carry several Poseidon strategic torpedoes.  One is believed to be the giant, highly modified Oscar II submarine K-139 Belgorod, which also will serve as a mothership for a small, special operations nuclear sub.  The other is the smaller Project 09851 submarine Khabarovsk, which appears to be purpose-built for carrying the Poseidon.

For more information on GUGI, Russian special operations submarines and other covert underwater projects, refer to the Covert Shores website created by naval analyst H. I. Sutton, which you’ll find at the following link:

http://www.hisutton.com/Analysis%20-%20Russian%20Status-6%20aka%20KANYON%20nuclear%20deterrence%20and%20Pr%2009851%20submarine.html

San Diego Zoo Global Takes a Major Step in Their Program to Save the Northern White Rhino

Peter Lobner

On 17 May 2018, San Diego Zoo Global announced that their southern white rhino Victoria is pregnant.  The event was reported by Bradley Fikes, bio-technology reporter at the San Diego Union-Tribune and former Lyncean Group presenter (Talk #103, 20 April 2016).  He noted:

“The developing baby is also a southern white rhino, conceived on March 22 through artificial insemination. The pregnancy is a dress rehearsal for the ultimate goal of creating more northern white rhinos, grown from embryos made from stem cells.”

This is the first time that San Diego Zoo Global’s Rhino Rescue Center has been successful in initiating a southern white rhino pregnancy through artificial insemination.

You can read Bradley Fikes complete article here:

http://enewspaper.sandiegouniontribune.com/infinity/article_share.aspx?guid=ea65284a-3097-45d6-ac42-481b55fab2e2

Southern white rhino Victoria.  Photo source: Tammy Spratt, San Diego Zoo Safari Park via San Diego Union Tribune

Northern white rhino genetic material maintained in San Diego Zoo Global’s “Frozen Zoo” is an important resource for attempting to re-build this nearly extinct species.   You may recall Dr. Barbara Durrant’s  21 June 2017 presentation to the Lyncean Group, “Endangered Species Rescue: How far should we go?”   In this presentation, Dr. Durrant explained the complex process being developed at San Diego Zoo Global to use northern white rhino tissue to create artificial embryonic stem cells that can be matured into northern white rhino egg and sperm cells. A northern white rhino embryo is created through in-vitro fertilization and then implanted into a southern white rhino surrogate mother.  If the pregnancy is successful, this process will yield a northern white rhino calf after a 16 – 18 month gestation period.

You’ll find the slides from Dr. Durrant’s  presentation (Talk #112) here:

https://lynceans.org/wp-content/uploads/2017/06/Frozen-Zoo-6-21-17-compressed.pdf

The process for developing the northern white rhino embryonic stem cells continues to improve. You can read a pre-print of the recent paper, ”Four new induced pluripotent stem cell lines produced from northern white rhinoceros with non-integrating reprogramming factors,” here.

https://www.biorxiv.org/content/early/2017/10/13/202499.full.pdf+html

The authors, from the San Diego Zoo Institute for Conservation Research and The Scripps Research Institute, La Jolla, reported creating stem cell lines for four more individual northern white rhinos.

You’ll find more information on San Diego Zoo Global’s wildlife conservation programs at here:

http://endextinction.org/victoria

Dividing by Zero

Peter Lobner

In 1967, the old Marchant electromechanical calculators in the physics lab were replaced by silent Wang electronic calculators.

The Marchant SCM Transflo Model TR shown below, manufactured after 1962, was a contemporary of the calculators replaced by the Wang.

Source: https://en.wikipedia.org/wiki/Marchant_calculator

The Wang 300-series electronic calculators were introduced in October of 1965, and the first machines went into production in March 1966.  The physics lab got a Wang system that looked like this.

Source: http://www.oldcalculatormuseum.com/wang360.html

This was the end of an era.  I could no longer vent my frustration at a calculation gone wrong by dividing by zero on several Marchant machines and leaving the room.

Why was this a problem for an electromechanical calculator?  These machines performed multiplication as a series of sequential additions and division were performed as a series of sequential subtractions.  The electromechanical Marchant calculator performed fully automatic division and would grind on until the final result was reached with a balance of zero in the “accumulator”, or until the last register on the machine had been filled and a small positive balance remained in the accumulator.

For example, 16 divided by 3 would be performed as:

16 -3 -3 -3 -3 -3 -3

At this point, the accumulator would be in “overdraft” (a negative value), the last subtraction would be cancelled by adding back +3, yielding a balance of +1 in the accumulator after 5 subtraction cycles. For a result set up for one decimal point accuracy, the calculation would continue as:

1 – 0.3 – 0.3 – 0.3 – 0.3

Again, the accumulator would be in “overdraft”, the last subtraction would be cancelled by adding back + 0.3, yielding a balance of + 0.1 in the accumulator after 3 subtraction cycles.

In this case, the result for 16 divided by 3 would be reported as 5.3.

Division by zero is the sequential subtraction of zero, over and over and over again. It’s an endless loop and the Marchant’s fully automatic division process was happy to oblige until someone got tired of the all the gear noise and cancelled the calculation (or pulled the plug).  These were durable machines.  I came into the lab one morning and found one Marchant still grinding away in an endless loop that probably started late the previous evening (I didn’t do it!).

Watch five old-school calculators grapple with division by zero here:

https://www.popularmechanics.com/technology/gadgets/g19695670/watch-five-old-school-calculators-grapple-with-division-by-zero/?src=nl&mag=pop&list=nl_pnl_news&date=040918

I guess you had to be there.

Thorium: What’s Old is New Again

Peter Lobner

Development of the uranium-thorium fuel cycle in the U.S began in the late 1940s, encouraged by the abundance of thorium, the ability to convert thorium into fissile uranium during reactor operation, and the prospects for a closed fuel cycle with good economics.  The commercial potential of thorium has yet to be realized.

Today, there is renewed interest in thorium as an abundant, cheap nuclear fuel source that can be employed in the context of a variety of proliferation-resistant nuclear fuel cycles.

1. In the beginning:

Alvin Weinberg is generally considered in the U.S. to be “father” of the pressurized water reactor (PWR), which has become the dominant type of nuclear reactor employed in commercial power generation and in naval reactors.  On 18 September 1944, Weinberg first described the basis for a PWR, with ordinary water as both coolant and moderator operating at high pressure, and producing steam for power production.

Dr. Alvin Weinberg. Source: Oak Ridge National Laboratory

On 10 April 1946, Weinberg and F. H. Murray (Oak Ridge, Clinton Laboratory) published, “High-Pressure Water as a Heat-Transfer Medium in Nuclear Power Plants,” in which the design characteristics of a water-cooled and moderated PWR were presented.  Interestingly, this PWR concept had a thorium-converter core, which used 233U as the fissile “seed” and thorium as the fertile “blanket” to breed more 233U during reactor operation.  This was similar in concept to the thorium-breeder core installed in the Shippingport commercial power reactor nearly 30 years later under the Department of Energy’s (DOE) Light Water Breeder Reactor (LWBR) Program.

The neutron absorption and decay chains for converting natural thorium (232Th) into fissile uranium (233U and 235U) are shown in the following diagram.

Source:  WAPD-TM-1387

Production of 233U through the neutron irradiation of 232Th invariably produces small amounts of 232U as an impurity (not shown in the above diagram), because of parasitic (n,2n) reactions on 233U itself, or on Pa233(protactinium), or on 232Th. The decay chain of 232U quickly yields strong gamma radiation emitters.  This characteristic is one aspect of the proliferation resistance of thorium fuel cycles.

2. Early commercial power reactors with thorium-converter cores

 In the U.S., thorium-converter cores were operated in five commercial power reactors between 1962 and 1989:

  • Indian Point 1 PWR
  • Elk River boiling water reactor (BWR)
  • Shippingport LWBR
  • Peach Bottom 1 high-temperature gas-cooled reactor (HTGR)
  • Fort St. Vrain HTGR

A brief overview of these commercial power reactors follows.  In retrospect, none would be judged as commercial successes.

Indian Point 1 thorium-converter Core 1 (1962 – 1974)

The first commercial use of a thorium-converter “seed-and-blanket” core was in the Indian Point 1 pressurized water reactor designed by Babcock & Wilcox. Construction started in New York in May 1956 and the plant was commissioned in October 1962.

Indian Point 1, circa 1963. Source: USDOE, https://commons.wikimedia.org/

Indian Point 1 nuclear plant cross-section.   Source: Atomic Power Review, http://atomicpowerreview.blogspot.com/2013/02/carnival-145.html

Indian Point 1 was one of very few nuclear plants to incorporate fossil fired superheat to supplement the reactor power. In the cross-section view above, you can see the two oil-fired superheaters placed between the reactor and the turbine generator.  In its original configuration, Indian Point 1 had a net electrical output of 255 MWe, of which 104 MWe was derived from the fossil-fired superheaters.

Core 1 was rated at 585 MWt.  This was the only thorium converter core; highly-enriched (93%) 235U was used as the seed material. This core consisted of 120 fuel assemblies arranged in three concentric zones, each with differing UO2– ThO2ratios.  The central zone had the lowest uranium content.  Core loading was about 1,300 kg (2,425 pounds) of UO2(1,100 kg of U-235) and 17,207 kg (37,935 pounds) of ThO2.

The zoned core and fuel element layout are shown below.

Source:  Directory of Nuclear Reactors, Volume IV, Power Reactors, International Atomic Energy Agency, 1962

Subsequent cores used low-enriched UO2fuel and were rated at a somewhat higher power, 615 MWt.  Core 2 was installed between the last quarter of 1965 and the first quarter of 1966, after three years of operation on the thorium-converter Core 1. With the all-UO2Core 2, the plant’s net electrical output was raised to 265 MWe.

Seventeen tons of stainless steel-clad thorium oxide pellet fuel from Core 1 were reprocessed at the privately owned and operated Nuclear Fuel Services plant at West Valley, New York.  This was the first commercial spent fuel reprocessing plant in the U.S.

The Indian Point 1 nuclear plant was shutdown in October 1974, after 12 years of operation.

Elk River thorium-converter core (1964 – 1968)

This small boiling water reactor (BWR) demonstration plant was developed by Allis-Chalmers and built in Minnesota. The reactor core, which was rated at 58.2 MWt, was a highly-enriched (93%) 235U / thorium converter.  Core loading was about 208 kg (459 pounds) of UO2and 4,300 kg (9,480 pounds) of ThO2in 148 fuel assemblies.

Like Indian Point 1, Elk River incorporated fossil fired superheat to supplement the reactor power.  The plant’s total thermal power was 73 MWt, yielding a net electrical output of 22 MWe. The general plant layout is shown below.

Source: http://atomicpowerreview.blogspot.com/2011/09/apr-atomic-journal-elk-river-1.html

The Elk River nuclear plant only operated from 1 July 1964 to 1 February 1968.  Subsequently, the plant was decommissioned. Some of the spent nuclear fuel was sent to the Trisaia facility in southern Italy for reprocessing as part of a thorium fuel cycle research program supported by the Italian National Committee for Nuclear Energy.  This pilot plant was operated during 1970s to process the uranium-thorium cycle fuels

Shippingport Light Water Breeder Reactor (LWBR, 1977 – 1982)

The LWBR Program, which was run for the Department of Energy (DOE) by the Office of Naval Reactors, was conducted to demonstrate the capability of the 233U/ thorium fuel system for use in a breeder reactor core that could be deployed in conventional light water reactor plants.  The LWBR core was installed in the Shippingport reactor and started operation in the fall of 1977.  Operation with the LWBR core finished on October 1, 1982.

Considerable experience was gained in fabricating the fuel for the LWBR core. This reactor used 233U / thorium instead of 235U / thorium as used in the Indian Point 1 and Elk River thorium converter cores.  The 233U needed for the LWBR was recovered from previously irradiated thorium using existing PUREX reprocessing equipment, which was designed for recovering uranium, but was not suitable for thorium recovery.  About 1,100 kg (2,425 pounds) of 233U was processed in pilot-plant scale equipment at Oak Ridge National Laboratory (ORNL) to produce the reactor-grade UO2needed for the LWBR core.  Fortunately, the 232U content of the uranium (note: 232U is a byproduct formed during thorium irradiation) was less than 10 ppm and remotely operated facilities with heavy shielding were not required to protect against high-energy gamma radiation from the 232U decay chain.

The basic LWBR seed-and-blanket core layout is shown in the following diagram:

Source:  INEEL/EXT-98-00799, Rev. 1, “Fuel Summary Report: Shippingport Light Water Breeder Reactor,” January 1999

LWBR fuel modules consisted of a hexagonal seed module inside an annular blanket module. The movable seed modules started life below the blanket modules and traveled vertically upward through the hexagonal passages in the blanket modules during core life. Core reactivity was controlled by changing the axial position of seed modules within the surrounding blanket modules, thus eliminating parasitic loss of neutrons to conventional poison control rods.

In the March 1986 report, “Shippingport Operations With the Light Water Breeder Reactor Core,”WAPD-TM-1542, Bettis Atomic Power Laboratory reported the following results:

“The Shippingport Station during LWBR operation demonstrated flexibility and load change response characteristics superior to those found in non-nuclear steam generating stations and the availability of the LWBR reactor compared very favorably with conventional light water reactors. The core operated for five years accumulating 29,047 effective full power hours (EFPH), far beyond the design goal of 15,000 EFPH. At the end of this period, the core was removed and the spent fuel shipped to the Naval Reactors Expended Core Facility in Idaho for a detailed examination to verify core performance, including an evaluation of breeding characteristics.”

Westinghouse reported the breeding performance of the reactor as follows (WAPD-T-3007, October 1993):

“Nondestructive assay of 524 fuel rods and destructive analysis of 17 fuel rods determined that 1.39% more fissile fuel was present at the end of core life than at the beginning, thereby establishing that breeding had occurred. Successful LWBR power operation to over 160% of design lifetime demonstrated the performance capability of this fuel system.”

The LBWR spent fuel was not reprocessed.

High-temperature Gas-Cooled Reactors (HTGRs, 1967 – 1989)

Three U.S. HTGRs and two German HTGRs have operated with U-Th coated particle fuel.

  • Peach Bottom 1 (1967 – 1974)
    • 40 MWe General Atomics HTGR operated in Pennsylvania
    • Used highly-enriched 235U / thorium fuel in the form of microspheres of mixed thorium-uranium carbide coated with pyrolytic carbon. These microspheres were embedded in annular graphite segments that were arranged into fuel elements.
  • Fort St. Vrain (1976 – 1989)
    • 330 MWe General Atomics HTGR operated in Colorado
    • Used highly-enriched 235U / thorium fuel in the form of TRISO and BISO microspheres coated with pyrolytic carbon, which were embedded in a graphite matrix and placed in prismatic graphite fuel elements.  The TRISO fuel particles were highly-enriched 235U and the BISO fuel particles were thorium.
    • Almost 25 tonnes (25,000 kg, 55,155 pounds) of thorium was used in fuel for the reactor.
  • Thorium High Temperature Reactor (THTR, 1983 – 1989)
    • 300 MWe pebble-bed reactor operated in Germany.
  • AVR (1967 – 1988)
    • 15 MWe pebble-bed reactor operated in Germany.
    • AVR was the first reactor based on the circa 1945 – 46 concept of the “Daniels Pile” by Farrington Daniels, the inventor of pebble bed reactors.

In the U.S., General Atomics originally planned to have HTGR spent fuel reprocessed to recover useful material, including 233U, which would have been recycle in HTGR fuel. The planned back-end of the fuel cycle included a step to separate the TRISO and BISO particles, thereby simplifying the downstream reprocessing steps for uranium and thorium.

No commercial HTGRs were built in the U.S. after Fort St. Vrain and the back-end of the HTGR U-Th fuel-cycle was never developed.  Spent fuel from the operating U.S. HTGRs was not reprocessed. DOE took title to the spent fuel and became responsible for managing its temporary storage at the Fort St. Vrain site.

3. Reprocessing spent uranium – thorium fuel *

By the early 1950s, several kilograms of purified 233U had been recovered from experimental lots of irradiated thorium, and two chemical processing flowsheets based on solvent extraction techniques had been developed and tested in small-scale operations.

The THOREX process was developed in the mid-1950s for reprocessing 233U – thorium fuel.  By the mid-to-late 1950s, the THOREX Pilot Plant Demonstration Program had been completed, and 35 tons of irradiated thorium metal had been processed in a facility with a throughput of 150 to 200 kg of thorium per day to recover 55 kg of purified 233U. The principal emphasis was on demonstrating the THOREX flowsheet, defining flowsheet capabilities, and identifying problem areas in the reprocessing of spent U-Th fuel.

During the 1960s, approximately 870 tons of thorium (primarily as ThO2) was irradiated. This thorium was then processed in production scale equipment to recover 1.4 tons of purified233U. The large-scale programs at Savannah River Plant (SRP) and Hanford utilized either the THOREX Flowsheet or a modified version of it (i.e., the Acid THOREX flowsheet) to effect the separation and recovery of 233U and thorium.

In the late 1970s, a total of 28 metric tons of fabrication scrap generated during the preparation of LWBR fuel was recycled in large-scale solvent extraction facilities to recover the 233U. The ability to dissolve advanced ThO2-containing fuels was an important step in demonstrating the reprocessing of spent fuel in a U-Th fuel cycle.

The DOE HTGR Fuel Recycle Program supported research and development for reprocessing HTGR fuel, focusing on small, engineering-scale tests.  No pilot- or full-scale reprocessing facility was built.

In April 1977, President Carter terminated federal support for reprocessing in an attempt to limit the proliferation of nuclear weapons material. The U.S. nuclear fuel cycle became the once-through fuel cycle we have today.

*          Source: “THOREX Reprocessing Characterization,” International Nuclear Fuel Cycle Evaluation (INFCE), 1978

4. The Radkowsky Thorium Reactor (RTR) concept

 Alvin Radkowsky, who was recruited by Admiral Rickover in 1947, later served as the Chief Scientist of the Naval Reactors program. He was responsible for originating and assisting in the development of two reactor concepts for which he was awarded the Navy’s Distinguished Civilian Award (the highest non-military award) in 1954 and the Atomic Energy Commission (AEC) Citation (1963):

  • Burnable poison, which is important to all nuclear power plants for managing long-term reactivity control, and is especially important for enabling very long life naval reactor cores.
  • Seed and blanket reactor core, which consists of a highly enriched fuel “seed” section surrounded by a “blanket” of fertile natural uranium. The blanket generates more than half of the reactor power and has a very long life relative to the “seed” section, which is replaced more frequently.

Alvin Radkowsky receives award from Admiral Hyman Rickover.  A diagram of the Shippingport reactor with a seed-and-blanket core is in the background. Source:  Thorium Power, Inc.

With the encouragement of Edward Teller, Alvin Radkowsky developed a long-standing interest in the use of thorium in nuclear reactors as a means to improve resistance to the proliferation of nuclear material suitable for making weapons. He held several patents in the field, which he assigned to the company he helped found in 1992, Thorium Power, Inc.

The Radkowsky Thorium Reactor concept developed by Alvin Radkowsky and Thorium Power makes use of a seed-and-blanket geometry with low-enriched (< 20%) 235U as the initial fissile seed material and thorium as the fertile blanket material.  Unlike Indian Point 1 and the LWBR, which separated the seed and blanket elements into zones in the core, the RTR implements the seed-and-blanket concept at the level of individual fuel assemblies that are designed to replace the fuel assemblies in existing reactors, but require a complex process to manage fuel during refueling outages. Radkowsky described his RTR fuel design concept as follows:

“Basically, seeds are treated similarly to the standard PWR assemblies. i.e., approximately one-third of seeds are replaced annually by “fresh” seeds, and the remaining two-thirds (partially depleted) seeds are reshuffled. Each seed is loaded into an “empty” blanket, forming a new fuel type. These new fuel type (fresh) assemblies are reshuffled together with partially depleted SBU (seed-blanket) assemblies to form a reload configuration for the next cycle.……..the Th-blanket in-core residence time is quite long (about 10 years), while the uranium part of the SBU (seed) is replaced on a annual (or 18 month) basis, similar to standard PWR fuel management practice.”

You can read his paper entitled, “Thorium Fuel for Light Water Reactors – Reducing Proliferation Potential of Nuclear Power Fuel Cycle,”here:

http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/28/023/28023771.pdf

The RTR seed-and-blanket fuel assembly concept and the simpler zoned seed-and-blanket core concept are well illustrated in the following figure from an article by Mujid S. Kazimi entitled, “Thorium Fuel for Nuclear Energy.”  The RTR core and the seed-and-blanket arrangement of the fuel rods in an individual fuel assembly are shown at the top of the diagram.  A more conventional seed-and-blanket core with separate seed and blanket assemblies is shown at the bottom of the diagram.

You can read Mujid Kazimi’s complete article on the American Scientist website here:

https://www.americanscientist.org/sites/americanscientist.org/files/200582141548_306.pdf

The September / October 1997 issue of the The Bulletin of the Atomic Scientists contains an article by John S. Friedman entitled, “More power to thorium?” in which the author offered the following comments on the RTR:

“The Radkowsky design avoids recycling by envisioning a complex fuel core in which uranium “seeds” enriched to about 20 percent uranium 235 are kept separate from a surrounding thorium-uranium “blanket.” The uranium 235 produces the neutrons that sustain the chain reaction while slowly creating uranium 233 in the blanket. As burnup continues, the newly created uranium 233 picks up an increasingly greater share of the fission load.”

“As in any uranium-fuel reactor, the uranium portion of the core would produce plutonium, but in lesser quantities than in a conventional reactor and with far higher isotopic contamination (from Pu-238, which is a strong alpha radiation emitter). The latter characteristic would make the plutonium even less desirable for weapons than is ordinary reactor-grade plutonium, argues Radkowsky. That would make his reactor exceptionally unattractive to would-be weapons makers. Although uranium 233 can be used for weapons, it too would be isotopically contaminated (from U-232, which is a strong, high-energy gamma radiation emitter), making its use in weapons unlikely.”

“The main selling point of the Radkowsky concept, according to Grae, is that the reactor ‘helps sever the link between nuclear power generation and nuclear weapons.’ The new reactor, he says, will help fulfill the mandate of the Nuclear Non-Proliferation Treaty, which calls not only for a halt in the proliferation of nuclear weapons, but also for the transfer of peaceful nuclear technology.”

You can read John Friedman’s complete article here:

https://ltbridge.com/wp-content/uploads/2017/08/19.pdf

Thorium Power, Inc. has worked with Kurchatov Institute, Brookhaven National Laboratory and others to design and analyze the use of hexagonal RTR-type thorium-plutonium fuel assemblies that could replace the standard fuel assemblies in Russian-designed VVER-1000 PWRs.  Analysis in 2001 indicated that large quantities of weapons-grade plutonium could be consumed over the 40 year operating life of a VVER-1000 reactor.

5. Molten salt thorium reactors

Molten salt reactors (MSRs) use molten fluoride salts as the primary coolant.  The main MSR concept is to have the fuel dissolved in the coolant as a fuel salt that is continuously circulated through the primary system and into a “reactor vessel” where a controlled criticality is maintained to produce useful power. The system operates at high temperature and low pressure.  The MSR concept could include provisions for on-line cleanup and reprocessing of the circulating fuel salt.

In the U.S., the DOE conducted an MSR program from 1957 to 1976. The small 8 MWt test reactor known as Molten Salt Reactor Experiment (MSRE) ran two campaigns at ORNL; the first campaign (1965 – 68) ran with 235U and the second campaign (1968 – 1969) ran with imported (not bred) 233U.  Thorium was not used in MSRE.

MSRE demonstrated the feasibility of the MSR concept and provided the technical basis for designing an MSR breeder using thorium with a graphite moderator in a core operating on thermal neutrons.  The MSR breeder never got past the study phase.

The Generation IV (Gen IV) International Forum, which was initiated by the U.S. Department of Energy in 2000, has been promoting a fast-spectrum molten salt reactor (MSFR) with dissolved 233U and thorium fuel. The Gen IV MSR power system concept is shown in the following diagram.  Construction and operation of any Gen IV reactor concept is decades away.

Source:  Gen IV International Forum.  https://www.gen-4.org/gif/jcms/c_42150/molten-salt-reactor-msr

In August 2017, the Salt Irradiation Experiment (SALIENT) began operation at the Petten High Flux Reactor in the Netherlands.  This is the first in-reactor experiment with molten salt in about 40 years. SALIENT will conduct tests on thorium molten salt in an actual reactor environment. The results of the SALIENT tests are intended to support future development of a European MSR thorium breeder reactor. You can read the Petten announcement here:

https://articles.thmsr.nl/petten-has-started-world-s-first-thorium-msr-specific-irradiation-experiments-in-45-years-ff8351fce5d2

6. India’s thorium fuel plan

 India is the only country in the world that has established a fully committed thorium program.  Because India is outside the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) due to its nuclear weapons program, it was for 34 years largely excluded from trade in nuclear plants and materials, which hampered its development of civil nuclear energy. Due to this trade ban and lack of indigenous uranium, India has been developing a unique nuclear fuel cycle to exploit its reserves of thorium. India has the second largest known reserve of thorium in the world (Australia is #1). In September 2008, the international Nuclear Suppliers Group (NSG) issued a waiver, which allowed India to commence international nuclear trade.  This has secured access to a uranium supply chain and opened the Indian nuclear market to various LWR commercial power plants from international suppliers.

India has developed a three-stage thorium fuel plan that involves three types of reactors and a closed nuclear fuel cycle.

  • Stage 1: Deployment of indigenous pressurized heavy-water reactors (PHWRs) to produce plutonium.
    • The PHWR designed by Bhabha Atomic Research Centre (BARC) is a horizontal pressure tube / calandria reactor using natural uranium dioxide (UO2) fuel and heavy water as moderator and coolant.
    • India currently operates 18 PHWRs power plants, with generating capacities between 100 to 540 MWe.
    • Four 700 MWe PHWRs are under construction.
    • At least 16 more 700 MWe PHWRs are planned.
    • In the mid-1990s, India began using thorium in fuel assemblies in PHWR initial cores to even out the core power distribution (flux flattening) to allow the reactor to operate at full power in its initial phase of operation.

You’ll find a detailed description of India’s PHWR here:

https://www.iaea.org/NuclearPower/Downloads/Technology/meetings/2011-Jul-4-8-ANRT-WS/2_INDIA_PHWR_NPCIL_Muktibodh.pdf

  • Stage 2: Deployment of indigenous fast-neutron reactors with blankets containing uranium and thorium to breed new fissile material (Pu and 233U).
    • The Prototype Fast Breeder Reactor (PFBR) designed by the Indira Gandhi Centre for Atomic Research is a sodium-cooled pool-type reactor rated at 500 MWe.
    • The PFBR initially will be fueled with a plutonium-uranium mixed oxide (PuO2– UO2) fuel.
    • PFBR is nearing completion at the Madras Atomic Power Station in Kalpakkam. Commissioning is expected in early-to-mid 2018 and commercial power generation may occur by end of 2018.
    • The Indian government in 2013 approved construction at Kalpakkam of fuel cycle facilities to recover plutonium and uranium, to be ready in time to process the first used fuel from the PFBR.
    • After PFBR, India plans to build six larger fast breeder reactors rated at 600 MWe.

You’ll find a description of the PFBR and the fast reactor fuel cycle at the following links:

http://fissilematerials.org/library/igcar03.pdf

and,

http://www.theenergycollective.com/dan-yurman/2410617/india-commits-fast-reactor-fuel-cycle-facility-u-233

  • Stage 3: Deployment of advanced heavy-water reactors (AHWR) designed by BARC to demonstrate commercial utilization of thorium.
    • The AHWR is a 300 MWe, vertical pressure tube type, boiling light water cooled, heavy water moderated reactor.
    • The fuel material will use Th-Pu MOX and Th-U MOX, where the uranium may be 233U or LEU 235U.  Development of Th-Pu and 233U-Th MOX fuels was initiated in 2001.
    • The reactor is configured to obtain a significant portion of power by fission of 233U derived from in-situ conversion from 232Th. On an average, about 39% of the power will be obtained from thorium.
    • One AHWR prototype currently is planned.  Start of construction has been delayed several times since it was first announced in 2004.  Start of construction in 2018 is possible.
    • BARC claims that the AHWR will have a one hundred year design life.

You’ll find more information on the AHWR at the following links:

http://www.barc.gov.in/reactor/ahwr.pdf

and,

https://aris.iaea.org/PDF/AHWR.pdf

7. Summary

So, there you have it.  Early experience with thorium fuel provided a technical proof-of-concept demonstration of thorium fueled reactors, but was not a commercial success.  A complete closed fuel cycle with thorium has never been demonstrated.

The key factor driving the resurgence of international interest in thorium is the proliferation resistance of the Th-U and Th-Pu fuel cycles.  The key factors driving India’s interest in thorium are the abundance of thorium and shortage of uranium in that nation coupled with India’s three-stage thorium fuel plan, which was developed to counter its long-term isolation from international trade in nuclear plants and materials as a consequence of not signing the NPT.

Work in Russia on Radkowsky Thorium Reactor (RTR) fuel elements and renewed work on a thorium molten salt reactor (MSR) in Europe certainly are encouraging.  However, there’s a long road (decades) from where these projects stand today and actual thorium utilization in a commercial nuclear power plant.  The most promising near-term (within a decade) demonstration of commercial utilization of thorium will be India’s AHWR and the associated thorium closed fuel cycle.

Additional resources on thorium:

“Nuclear Power in India”, World Nuclear Association:  http://www.world-nuclear.org/information-library/country-profiles/countries-g-n/india.aspx

CHEUK WAH LAU, “Improved PWR Core Characteristics with Thorium-containing Fuel”, Thesis for the Degree of Doctor of Philosophy, 2014:  https://www.kth.se/polopoly_fs/1.597223!/Improved%20PWR_Cheuk%20Wah%20Lau.pdf

Michael J. Higatsberger, “The Non-Proliferative Commercial Radkowsky Thorium Fuel Concept,”November 1999:  https://ltbridge.com/wp-content/uploads/2017/08/16.pdf

Gravitational Waves Come in Colors

Peter Lobner

On 14 September 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) ushered in a new era in astronomy and astrophysics by opening a part of the gravitational wave spectrum to direct observation. In my 17 February 2017 post,“Perspective on the Detection of Gravitational Waves,” I included the following graphic from an interview of Kip Thorne by Walter Issacson.

Source: screenshot from Kip Thorne / Walter Issacson interview at: https://www.youtube.com/watch?v=mDFF27Nr-EU

The key point of this graphic is to illustrate how the LIGO detector is able to “see” only a part of the gravitational wave spectrum.  The LIGO team reported that the Advanced LIGO detector is optimized for “a range of frequencies from 30 Hz to several kHz, which covers the frequencies of gravitational waves emitted during the late inspiral, merger, and ringdown of stellar-mass binary black holes.”  This is the type of event associated with the first several gravitational wave detections. The European Advanced VIRGO detector, which came on line in 2017, operates on the same principle as LIGO, precisely measuring differences in the times-of-flight of laser beams in the two legs of a long baseline interferometer. VIRGO is optimized to view a range of gravitational wave frequencies from about 10 Hz to 10 kHz.

On 17 August 2017, LIGO and VIRGO detected gravitational waves from a different source: the collision of two neutron stars. Unlike the previous gravitational wave detections from black hole coalescence, the neutron star collision that produced GW180817 also produced other observable phenomena in multiple wavelength bands. LIGO and VIRGO triangulated the source of this gravitational wave event, which also was observed by dozens of telescopes on the ground and in space, as shown in the following diagram.

Source: LIGO – VIRGO, https://www.ligo.org/detections/GW170817/images-GW170817/GW+EM_Observatories.jpg

The ability to cue a worldwide array of multi-spectral observatories on short notice greatly added to the depth of understanding of the GW170817 event.  The international collaboration on this event was a great example of the benefits of “multi-messenger” astronomy. For more information, see my 25 October 2017 post, “Linking Gravitational Wave Detection to the Rest of the Observable Spectrum.”

At the 11 April 2018 Lyncean Group meeting, Dr. Rana Adhikari, Professor of Physics, Mathematics and Astronomy at Caltech, provided an update on LIGO in his presentation, “The Dirty Details of Detecting Gravitational Waves from Black Holes.” You can view Dr. Adhikari’s presentation slides at the following link:

https://lynceans.org/talk-119-4-11-18/

As we have seen, the LIGO class of gravitational wave detector is capable of seeing large amplitude, relatively high frequency gravitational waves from very powerful, discrete events: stellar-mass binary black hole coalescence and neutron star collisions.

As shown in the above graphic, viewing lower frequency (longer wavelength) gravitational waves requires different types of detectors, which are discussed below.

LISA –  Laser Interferometer Space Antenna

This will be a very long baseline, equilateral triangular laser interferometer in space, established of three spacecraft flying in formation in an Earth-trailing heliocentric orbit.  Each leg of the space interferometer will measure 2.5 million kilometers (1.55 million miles), about 625,000 times the length of the LIGO baseline (4 km, 2.49 miles). Each spacecraft will contain a gravitational wave detector sensitive at frequencies from about 10-4 Hz to 10-1 Hz, well below the frequency range of LIGO and VIRGO.

The European Space Agency’s (ESA) LISA Pathfinder spacecraft, which was launched in 2015 and ended its mission in July 2017, validated the technology for the LISA space interferometer.

Source: ESA, https://www.elisascience.org/

ESA reported:

“Analysis of the LISA Pathfinder mission results towards the end of the mission (red line) compared with the first results published shortly after the spacecraft began science operations (blue line). The initial requirements (top, wedge-shaped area) and that of the future gravitational-wave observatory LISA (middle, striped area) are included for comparison, and show that LISA Pathfinder far exceeded expectations.”

The ESA is planning to launch LISA in the 2029 – 2032 timeframe.  See my 27 September 2016 post, “Space-based Gravity Wave Detection System to be Deployed by ESA,” for additional information on LISA.  The LISA mission website is at the following link:

https://www.elisascience.org

PTA – Pulsar Timing Array

A pulsar is a highly magnetized rotating neutron star or white dwarf that emits a beam of electromagnetic radiation. This radiation can be observed only when the beam is pointing toward Earth.

PTA gravitational wave detection is based on correlated radio-telescope observations of an array of many pulsars known as “millisecond pulsars” (MSPs).  The signal from an MSP has a very predictable time-of-arrival (TOA), thereby allowing each MSP to function as a galactic “clock.”  Small disturbances in each “clock” are measurable with high precision on Earth.  In essence, the distance between an MSP and the observing radio-telescope forms one leg of a gravitational wave detector, with the leg length being measured in light-years.  A disturbance from a passing gravitational wave would to have a measurable signature across the many MSPs in the pulsar timing array.

A PTA is intended to observe in a different range in gravitational wave frequencies than LIGO and VIRGO, and is expected to see a different category of gravitational wave sources. Whereas LIGO and VIRGO can detect gravitational waves in the tens to thousands of Hz (audio) range, radio-telescope observatories currently are using PTAs to search for gravitational waves in the tens to hundreds of microHertz (10-6Hz) range with prospects of getting down to the 10-8Hz range. The primary source of gravitational waves in this frequency range is expected to be super-massive black hole binaries (billions of solar masses), which are believed to exist throughout the universe at the center of galaxies.

The International Pulsar Timing Array (IPTA) is an international collaboration among the following radio-telescope consortia: European Pulsar Timing Array (EPTA), the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), and the Parkes Pulsar Timing Array (PPTA).  The goal of the IPTA is to detect gravitational waves using an array of about 30 MSPs. IPTA reports:

“Using telescopes located around the world is important, because any single telescope can see (a particular) pulsar … for much less than twelve hours, depending on the observing site’s latitude. Thus, the telescopes “trade off” between one another – as the pulsar sets from the perspective of, say, the Parkes telescope in Australia, it rises from the perspective of the Lovell telescope in the UK.”

You’ll find more information on IPTA on their website at the following link:

http://www.ipta4gw.org

You can visit the NANOGrav website here:

http://nanograv.org

Continuous gravitational waves

On 10 April 2018, the Max Planck Institute for Gravitational Physics announced the formation of a permanent Max Planck Independent Research Group under the leadership of Dr. M. Alessandra Papa to search for continuous gravitational waves.  The primary goal of this research group is to make the first direct detection of gravitational waves from rapidly rotating neutron stars. You can read this announcement here:

http://www.aei.mpg.de/2236875/searchingcontinuouswaves

Generation of the weak, continuous gravitational waves depends on the neutron star having an asymmetry that would perturb the stars gravitational field as it rapidly rotates. The method for detecting these weak, continuous gravitational waves was not described in the Planck Institute announcement.

CMB – Cosmic microwave background

The CBM is believed to be an artifact of the Big Bang and could carry evidence of the primordial gravitational waves from that era.  Such evidence would be expected to stretch across broad areas of the observable universe.

The European Space Agency (ESA) developed the Planck space observatory to map the CMB in microwave and infrared frequencies at unprecedented levels of detail. The Planck spacecraft was launched on 14 May 2009 and operated until 23 October 2013.  In 2016, the ESA released the results of the Planck all-sky survey of the CBM, which revealed that the universe appears to be isotropic, at least at the resolution of the Planck space observatory.  Researchers found that the actual CMB shows only random noise and no signs of patterns.

Planck all-sky survey. Source; ESA / Planck Collaboration

You’ll find more information on the Planck mission in my 28 September 2016 post, “The Universe is Isotropic.”

You can access ESA’s Planck science team home page here:

https://www.cosmos.esa.int/web/planck/home

In summary

The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) website contains the following summary chart, which is an alternate view of the chart at the start of this article (from the Kip Thorne / Walter Issacson interview).  The NANOGrav chart provides a good perspective on the observational technologies that are opening windows into the broad spectrum of gravitational waves and their varied sources.

So, in an analogy to the optical spectrum and the range of colors we see every day, the primordial gravitational waves in the CBM would be at the “red” end of the gravitational wave spectrum. The much higher frequency gravitational waves seen by LIGO and VIRGO, from stellar-mass binary black hole coalescence and neutron star collisions, would be at the “violet” end of the gravitational wave spectrum. The LISA space-based interferometer will be looking in the “blue-green” range, while PTA observatories are looking in the “yellow-orange” range.

For more information on the current state of gravitational wave technology, you’ll find a good survey article by Davide Castelvecchia, entitled “Here Come the Waves,” in the 12 April 2018 issue of Nature, which you can read here:

https://www.nature.com/magazine-assets/d41586-018-04157-6/d41586-018-04157-6.pdf