Category Archives: Nuclear propulsion

Ulstein’s Nuclear-powered Thor and its All-electric Companion Vessel Are a Zero-Carbon Solution for Marine Tourism

Peter Lobner

1. Introduction

In June 2022, the Norwegian firm Ulstein (https://ulstein.com) announced their conceptual design of a Replenishment, Research and Rescue (3R) vessel named Thor that will be powered by a thorium molten salt reactor (MSR). This vessel can function as a seaborne mobile charging station for a small fleet of electrically-powered expedition / cruise ships that are designed to operate in environmentally sensitive areas such as the Arctic and Antarctic. Other environmentally sensitive areas include the West Norwegian Fjords, which are UNESCO World Heritage sites that will be closed in 2026 to all ships that are not zero-emission. In the future, similar regulations could be in place to protect other environmentally sensitive regions of the world, thereby reinforcing Ulstein’s business case behind Thor and its all-electric companion vessels.

Ulstein’s Thor MSR-powered vessel (left) and 
Sif electrically-powered expedition / cruise vessel (right). 
Source: Ulstein

2. The MSR-powered Thor charging station

Thor is a 149-meter (500-foot) long, zero-emission, nuclear-powered vessel that features Ulstein’s striking, backwards-sloping X-bow, which is claimed to result in a smoother ride, higher speed while using less energy, and less mechanical wear than a ship with a conventional bow. 

For its R3 mission, Thor would be outfitted with work boats, cranes, a helicopter landing pad, unmanned aerial vehicles (UAVs), unmanned surface vessels, firefighting equipment, rescue booms, a lecture hall and laboratories.

As a charging station, Thor would be sized to recharge four all-electric vessels simultaneously.

Thor.  Source: Ulstein

Thor also could serve as a floating power station, replacing diesel power barges in some developing countries or in some disaster areas while the local electric power infrastructure is being repaired.

Ulstein projects that an operational Thor vessel could be launched in “10 to 15 years.” However, the development and licensing of a marine MSR is on the critical path for that schedule.  

Thor, starboard side views.  Source, both graphics: Ulstein

3. The all-electric Sif expedition / cruise ship

Sif, named after the goddess who was Thor’s wife, is a design concept for a 100-meter (330-foot) long, all-electric, zero-emission expedition / cruise ship designed to operate with minimal impact in environmentally sensitive areas. The ship will be powered by a new generation of solid batteries that are expected to offer greater capacity and resistance to fire than lithium-ion batteries used commonly today.  It will be periodically recharged at sea by Thor.

The ship can accommodate 80 passengers and 80 crew. 

Sif, starboard side view.  Source, both graphics: Ulstein

4. A marine MSR power plant

The pressurized water reactor (PWR) is the predominant marine nuclear power plant in use today, primarily in military vessels, but also in Russian icebreakers and a floating nuclear power plant in the Russian Arctic. 

Ulstein reported that it has been exploring MSR technology because of its favorable operating and safety characteristics. For example, an MSR operates at atmospheric pressure (unlike a PWR) and passive features and systems maintain safety in an emergency. If the core overheats, the molten salt fuel/coolant mixture automatically drains out of the reactor and into a containment vessel where it safely solidifies and can be reused.  You’ll find a good overview of MSR technology here: https://whatisnuclear.com/msr.html

While a few experimental MSRs have operated in the past, no MSR has been subject to a commercial nuclear licensing review, even for a land-based application. Ulstein favors a thorium-fueled MSR. The thorium-uranium-233 fuel cycle introduces additional technical and nuclear licensing uncertainties because of the lack of operational and nuclear regulatory precedents.

Several firms are developing MSR concepts. However, the combination of a marine MSR and a thorium fuel cycle remains elusive. Two uranium-fueled marine MSR design concepts are described below.

Seaborg Technologies

The Danish firm Seaborg Technologies (https://www.seaborg.com), founded in 2014, is developing a compact MSR (CMSR) with a rating of about 250 MWt / 100 MWe for use in power barges (floating nuclear power plants) of their own design (see my 16 May 2021 post). The thermal-spectrum CMSR uses uranium-235 fuel in a molten proprietary salt, with a separate sodium hydroxide (NaOH) moderator.  

A Seaborg Technologies CMSR module could generate 100 MWe. Dump tank shown below reactor. Source: Seaborg via NEI (2022)

Seaborg’s development time line calls for a commercial CMSR prototype to be built in 2024, with commercial production of power barges beginning in 2026. 

Source: Seaborg (2022)

In April 2022, Seaborg and the Korean shipbuilding firm Samsung Heavy Industries signed a partnership agreement for manufacturing and selling turnkey CMSR power barges. 

On 10 June 2022, Seaborg was selected by the European Innovation Council to receive a significant (potentially up to €17.5 million) innovation grant to help accelerate their work on the CMSR.

CORE-POWER and the Southern Company consortium

The UK firm CORE-POWER Ltd. (https://corepower.energy), founded in 2018, began with a concept for a compact uranium-235 fueled, molten chloride salt reactor named the m-MSR for marine applications. This modular, inherently safe, 15 MWe micro-reactor system was designed as a zero-carbon replacement power source for the fossil-fueled power plants in many existing commercial marine vessels.  It also was intended for use as the original power source for new vessels, as proposed for the Earth 300 Eco-Yacht design concept unveiled by entrepreneur Aaron Olivera in April 2021 (see my 17 April 2021 post). The power output of a modular CORE-POWER m-MSR installation could be scaled to meet operational needs by adding reactor modules in compact arrangements suitable for shipboard installation. 

A set of six small, compact CORE-POWER m-MSR modules
could generate 90 MWe. Dump tank not shown. Source: CORE-POWER

In November 2020, CORE-POWER announced that it had joined an international consortium to develop MSRs. This team includes the US nuclear utility company Southern Company (https://www.southerncompany.com), US small modular reactor developer TerraPower (https://www.terrapower.com) and nuclear technology company Orano USA (https://www.orano.group/usa/en). In the consortium, TerraPower is responsible for the fast-spectrum Molten Chloride Fast Reactor (MCFR). CORE-POWER is responsible for maritime readiness and regulatory approvals.

This consortium applied to the US Department of Energy (DOE) to participate in cost-share risk reduction awards under the Advanced Reactor Demonstration Program (ARDP), to develop a prototype MCFR as a proof-of-concept for a medium-scale commercial-grade reactor. In December 2020, the consortium was awarded $90.4 million, with the goal of demonstrating the first MCFR in 2024.  DOE reported, “They expect to begin testing in a $20 million integrated effects test facility starting in 2022. The team has successfully scaled up the salt manufacturing process to enable immediate testing. Data generated from the test facility will be used to validate thermal hydraulics and safety analysis codes for licensing of the reactor.”In February 2021, CORE-POWER presented the MCFR development schedule in the following chart, which shows the MCFR becoming available for deployment in marine propulsion in about 2035.  This is within the 10 to 15 year timescale projected by Ulstein for their first Thor vessel.

Source: CORE-POWER (2021)

5. In conclusion

A seaborne nuclear-powered “charging station” supporting a small fleet of all-electric marine vessels provides a zero-carbon solution for operating in protected, environmentally sensitive areas that otherwise would be off limits to visitors. Ulstein’s concept for the MSR-powered Thor R3 vessel and the Sif companion vessel is a clever approach for implementing that strategy.

It appears that a uranium-fueled marine MSR could be commercially available in the 10 to 15 year time frame Ulstein projects for deploying Thor and Sif.  The technical and nuclear regulatory uncertainties associated with a thorium-fueled marine MSR will require a considerably longer time frame. 

6. For additional information 

Ulstein Thor & Sif

Video

Seaborg CMSR

CORE-POWER m-MSR

The Earth 300 Eco-Yacht Could Serve as a Prototype for De-carbonizing the World’s Commercial Marine Transportation Fleets

Peter Lobner

In early April 2021, a flurry of articles described the beautiful, futuristic, nuclear-powered eco-yacht conceived by entrepreneur Aaron Olivera, CEO of Earth 300 (https://earth300.com), and introduced in Singapore as his concept for a signature vessel for conducting environmental research and raising environmental awareness around the world.

Aaron Olivera and the Earth 300 eco-yacht. Source: Archyde.com

This sleek yacht is almost 300 meters long with a prominent cantilevered observation deck near the bow and a 13-story glass “science sphere” amidships. Olivera describes this vessel as follows: 

“Earth 300 it is an extreme technology platform for science, exploration and innovation at sea. Its mission is to ring the ecological alarm on a global scale and combat climate change. Using technology it will quickly scale and deploy solutions to market. Its ultimate ambition is to inspire billions of people to contribute to the preservation of our shared planet, and becoming a sustainable and future worthy civilization.”

The ship’s design was developed by Ivan Salas Jefferson, founder of Iddes Yachts (https://iddesyachts.com), in collaboration with the Polish naval architecture firm NED (https://www.ned-project.eu). Mikal Bøe is the CEO of London-based Core Power (https://corepower.energy), which will supply the next-generation, inherently safe marine molten salt reactor (m-MSR) power plant, using MSR technology developed by the US nuclear company TerraPower (https://www.terrapower.com) that was co-founded by Bill Gates. 

The general arrangement of the ship’s inhabited spaces.
Source: Earth 300

The current design has taken six years and $5 million to develop.  Earth 300 reports that it is making good progress toward getting an Approval in Principle (AIP) from RINA (formerly Registro Italiano Navale). RINA is a founding member of the International Association of Classification Societies (IACS), which promotes safer and cleaner shipping worldwide.  The AIP is a framework used by RINA to review and approve innovative and novel concepts that are not covered by traditional classification prescriptive rules, so that a level of safety in line with the current marine industry practice is provided. The AIP process is a risk-based approach to classification that allows for new designs and novel concepts to be validated with safety equivalencies.

Following the AIP, Earth 300 should be able to request construction quotes from one or more shipyards, likely in Europe and/or South Korea. The ship will be equipped with 22 laboratories for about 160 scientists, cutting-edge artificial intelligence (AI) and robotics systems, and facilities for operating helicopters and submersible and semi-submersible vehicles.  Earth 300 executives reportedly estimated that the total construction cost will be between $500 million and $700 million.

The observation deck is located atop the bow section of the ship.
Source: Earth 300
Foredeck helipad and hangar for a helicopter. Source: Earth 300
The sphere houses a “science city” where most of the shipboard research facilities are located.  Source: Earth 300

Once in operation, the ship is certain to command attention wherever it goes, as a recognizable symbol for environmental protection.  This notoriety may be enough to attract wealthy tourists willing to pay $3 million for a 10-day cruise in the 10 luxury suites with private balconies and accommodations for personal staff in a separate set of cabins.  That sort of money will buy a lot of selfies, instagrams and some durable bragging rights. 

The ship is designed to accommodate 425 people, including the ship’s crew, scientists, and the group of wealthy tourists paying full price. In addition, it has been reported that Olivera envisages inviting groups of other people to travel at a lower price or even for free. For example, 10 suites would be made available to what Olivera calls Very Interesting Persons – people from all walks of life who would bring unique experience or knowledge to the voyage. In addition, some lucky artists, explorers and students may travel for free.

While I’m impressed with the general concept of this ship, I feel that the primary benefit of this grand vessel can’t be to serve as a mobile marine “mixer” for a few very wealthy individuals to associate with scientists, some elite Very Interesting Persons, and a patchwork of others interested in environmental protection.

Like the 3 AM infomercial says, “But wait, there’s more.” Research performed aboard the ship would be “open source” and shared with other research efforts around the world.  That’s great, but more information is needed on the meaningful research programs that would be conducted on the Earth 300 vessel in segments that match the schedule and route of what is essentially a cruise ship.  It seems that a much less expensive dedicated vessel could accomplish the same research while not serving as an environmental sideshow on a cruise ship.

With the ship scheduled to launch in 2025, the vessel itself will be ready many years before the planned marine molten salt reactors (m-MSRs) have been developed and approved by the appropriate nuclear and marine regulatory agencies.  Therefore, it is likely that the vessel will be designed to operate initially with a conventional marine power plant running on synthetic “renewable” fuels.  This isn’t exactly a big step in the right direction for helping to reduce the carbon emissions from worldwide commercial marine transportation.

Like the 3 AM infomercial says, “But wait, there’s more,” or at least, there should be.

Core Power, the developer of the m-MSR planned for the Earth 300 vessel, is designing their 15 MWe inherently safe micro-reactor system as a zero-carbon replacement power source for the fossil-fueled power plants in many commercial marine vessels. On their website, Core Power presents the following business case:

“Over the next few decades as many as 60,000 ships must transition from combustion of fossil fuels to zero-emission propulsion. The UN’s maritime agency IMO has mandated with unanimous approval from 197 countries that shipping must reduce emissions by 50% of the 2008 total, before 2050. This means an actual emission reduction of almost 90%, by 2050. MSR technology being developed by the consortium could achieve that goal, by powering production of green sustainable fuels for smaller ships and providing onboard electric power for large ships, with zero emissions as standard.”

A set of six small, compact Core Power m-MSRs could generate
90 MWe (about 120,000 hp). Source: Core Power

I think it is actually fortuitous that the Earth 300 vessel will start its life as a fossil-fueled vessel.  From this starting point, Earth 300 will be at the vanguard of a new generation of inherently safe marine nuclear power system development and deployment.

Converting the Earth 300 vessel to nuclear power will move the discussions on commercial marine nuclear power from the academic domain, where it has languished for many decades, to the commercial marine nuclear safety regulatory domain, which has been inactive for decades and likely is not prepared for this new applicant.  By being first in line, Earth 300 and Core Power take on substantial licensing risk that certainly will add to the time and cost of their nuclear licensing efforts.  However, they are in unique positions as a reactor supplier and a vessel operator to help shape the licensing dialogue pertaining to the use of inherently safe micro-reactors in marine vessels, and the worldwide operation of vessels using such reactors.

The experience gained from converting Earth 300 from fossil to nuclear power will de-risk the nuclear power conversion process for the entire marine transportation industry.  

  • Regulatory precedents will have been established for the reactor designer and the vessel operator. 
  • The conversion experience will yield many metrics and lessons learned that will help in planning and executing subsequent conversions. 
  • Ports around the world will be on notice that commercial nuclear-powered vessels once again are a reality and appropriate port-specific nuclear safety plans may be required

In this role alone, Earth 300 will create a path for the commercial marine transportation industry to meet the IMO’s 2050 emission goal.  This would be a truly substantive accomplishment that will far outweigh the ship’s public relations accomplishments as a symbol of environmental protection and showcase for environmental research.

I hope Aaron Olivera gets the support he needs to build the Earth 300 ship and subsequently convert it to nuclear power.  At one level, the ship is a grand gesture.  On another level, the nuclear powered ship is a substantive step toward a future with zero-carbon commercial marine transportation.

For more information

75th Anniversary of the Kurchatov Institute

Peter Lobner

The I. V. Kurchatov Institute of Atomic Energy in Moscow was founded 75 years ago, in 1943, and is named for its founder, Soviet nuclear physicist Igor Vasilyevich Kurchatov.  Until 1955, the Institute was a secret organization known only as “Laboratory No. 2 of the USSR Academy of Sciences.”  The initial focus of the Institute was the development of nuclear weapons.

Kurchatov Institute 75thanniversary on Russian commemorative postage stamp. https://en.wikipedia.org/

I. V. Kurchatov and the team of scientists and engineers at the Institute led or supported many important historical Soviet nuclear milestones, including: 

  • 25 December 1946: USSR’s F-1 (Physics-1) reactor achieved initial criticality at Kurchatov Institute.  This was the 1st reactor built and operated outside the US.
  • 10 June 1948: USSR’s 1st plutonium production reactor achieved initial criticality (Unit A at Chelyabinak-65). The reactor was designed under the leadership of N. A. Dollezhal.
  • 29 August 1949: USSR’s 1st nuclear device, First Lightning [aka RDS-1, Izdeliye 501 (device 501) and Joe 1], was detonated at the Semipalatinsk test site in what is now Kazakhstan.  This was the 1st nuclear test other than by the US.
  • 27 June 1954: World’s 1st nuclear power plant, AM-1 (aka APS-1), was commissioned and connected to the electrical grid, delivering power in Obninsk.  AM-1 was designed under the leadership of N. A. Dollezhal.
  • 22 November 1955: USSR’s 1st thermonuclear device (RDS-37, a two-stage device) was detonated at the Semipalatinsk test site.  This also was the world’s 1stair-dropped thermonuclear device.
  • 5 December 1957: USSR’s 1st nuclear-powered icebreaker, Lenin, was launched.  This also was the world’s 1st nuclear-powered surface ship.
  • 4 July 1958: USSR’s 1st  nuclear-powered submarine, Project 627 SSN K-3, Leninskiy Komsomol, made its 1st underway on nuclear power.
  • 1958: World’s 1st Tokamak, T-1, initial operation at Kurchatov Institute.
I. V. Kurchatov and F-1 reactor on Russian commemorative postage stamp. Source:  Wikimedia Commons

I. V. Kurchatov served as the Institute’s director until his death in 1960 and was awarded Hero of Socialist Labor three times and Order of Lenin five times during his lifetime.

After I. V. Kurchatov’s death in 1960, the noted academician Anatoly P. Aleksandrov was appointed as the director of the Institute and continued in that role until 1989.  Aleksandrov already had a key role at the Institute, having been appointed by Stalin in September 1952 as the scientific supervisor for developing the USSR’s first nuclear-powered submarine and its nuclear power unit.

A. P. Aleksandrov and OK-150 reactor on Russian commemorative postage stamp. Source:  Wikimedia Commons

Until 1991, the Soviet Ministry of Atomic Energy oversaw the administration of Kurchatov Institute.  After the formation of the Russian Federation at the end of 1991, the Institute became a State Scientific Center reporting directly to the Russian Government.  Today, the President of Kurchatov Institute is appointed by the Russian Prime Minister, based on recommendations from Rosatom (the Russian State Energy Corporation), which was formed in 2007.

You’ll find a comprehensive history of Kurchatov Institute in a 2013 (70thanniversary) special issue of the Russian version of Scientific American magazine, which you can download here:

 https://sciam.ru/download_issues/7/47.pdf

The evolution of Kurchatov Institute capabilities from its initial roles on the Soviet nuclear weapons program is shown in the following diagram.

Source: Special issue 2013, www.scientificrussia.ru

Modern roles for Kurchatov Institute are shown in the following graphic.

Source: Special issue 2013, www.scientificrussia.ru

In the past 75 years, the Kurchatov Institute has performed many major roles in the Soviet / Russian nuclear industry and, with a national security focus, continues to be a driving force in that industry sector.

Now, lets take a look at a few of the pioneering nuclear projects led or supported by Kurchatov Institute:

  • F-1 (Physics-1) reactor
  • Plutonium production reactors
  • Obninsk nuclear power plant AM-1
  • T-1 Tokamak

F-1 (Physics-1) reactor

The F-1 reactor designed by the Kurchatov Institute was a graphite-moderated, air-cooled, natural uranium fueled reactor with a spherical core about 19 feet (5.8 meters) in diameter. F-1 was the first reactor to be built and operated outside of the US.  It was a bit more compact than the first US reactor, the Chicago Pile, CP-1, which had an ellipsoidal core with a maximum diameter of about 24.2 feet (7.4 meters) and a height of 19 feet (5.8 meters).

The F-1 achieved initial criticality on 25 December 1946 and initially was operated at a power level of 10 watts.  Later, F-1 was able to operate at a maximum power level of 24 kW to support a wide range of research activities. In a 2006 report on the reactor’s 60thanniversary by RT News (www.rt.com), Oleg Vorontsov, Deputy Chief of the Nuclear Security Department reported, “Layers of lead as they are heated by uranium literally make F1 a self-controlling nuclear reactor. And the process inside is called – the safe-developing chain reaction of uranium depletion. If the temperature rises to 70 degrees Celsius (158° Fahrenheit), it slows down by its own! So it simply won’t let itself get out of control.” 

F-1 was never refueled prior to its permanent shutdown in November 2016, after 70 years of operation.

Top of the F-1 reactor core. Source: http://nuclearweaponarchive.org/
F-1 reactor facility cross-section diagram.  The F-1 reactor is the igloo-shaped structure located in the open pit.  Source: http://nuclearweaponarchive.org/
Graphite stacks of the F-1 reactor.  Source: Kurchatov Institute

Plutonium production reactors

The first generation of Soviet plutonium production reactors were graphite-moderated, natural uranium fueled reactors designed under the leadership of N.A. Dollezhal while he was at the Institute of Chemical Machinery in Moscow.  The Kurchatov Institute had a support role in the development of these reactors.The five early production reactors at Chelyabinsk-65 (later known as the Mayak Production Association) operated with a once-through primary cooling water system that discharged into open water ponds.

Simplified cross-section of a Russian graphite-moderated, water-cooled plutonium production reactor.  Source: PNL-9982

Four of the five later graphite-moderated production reactors at Tomsk had closed primary cooling systems that enabled them to also generate electric power and provide district heating (hot water) for the surrounding region.  You’ll find a good synopsis of the Soviet plutonium production reactors in the 2011 paper by Anatoli Diakov, “The History of Plutonium Production in Russia,” here:  

http://scienceandglobalsecurity.org/archive/sgs19diakov.pdf

Additional details on the design of the production reactors is contained in the 1994 Pacific Northwest Laboratory report PNL-9982, “Summary of Near-term Options for Russian Plutonium Production Reactors,” by Newman, Gesh, Love and Harms.  This report is available on the OSTI website here:   

https://www.osti.gov/servlets/purl/10173950

Obninsk nuclear power plant AM-1 (Atom Mirny or “Peaceful Atom”)

AM-1 nuclear power plant exterior view.  Source:  tass.ru
Panoramic view of the AM-1 power plant control room.  Source: www.chistoprudov.ru via https://reactor.space/news_en/

Obninsk was the site of the world’s first nuclear power plant (NPP).  This NPP had a single graphite-moderated, water-cooled reactor fueled with low-enriched uranium fuel. The reactor had a maximum power rating of 30 MWt.  AM-1 was designed by N.A. Dollezhal and the Research and Development Institute of Power Engineering (RDIPE / NIKIET) in Moscow, as an evolution of an earlier Dollezhal design of a small graphite-moderated reactor for ship propulsion.  The Kurchatov Institute had a support role in the development of AM-1.

The basic AM-1 reactor layout is shown in the following diagram.

Source: Directory of Nuclear Reactors, Vol. IV, Power Reactors, International Atomic Energy Agency, 1962

The closed-loop primary cooling system delivered heat via steam generators to the secondary-side steam system, which drove a steam turbine generator that delivered 5 MWe (net) to the external power grid.   Following is a basic process flow diagram for the reactor cooling loops.

Source: Directory of Nuclear Reactors, Vol. IV, Power Reactors, International Atomic Energy Agency, 1962

Construction on AM-1 broke ground on 31 December 1950 at the Physics and Power Engineering Institute (PEI) in Obninsk, about 110 km southwest of Moscow.  Other early milestone dates were:

  • Initial criticality:  5 May 1954
  • Commissioning and first grid connection:  26 June 1954
  • Commercial operation:  30 November 1954

In addition to its power generation role, AM-1 had 17 test loops installed in the reactor to support a variety of experimental studies. After 48 years of operation, AM-1 was permanently shutdown on 28 April 2002.

You can read more details on AM-1 in the following two articles: “Obninsk: Number One,” by Lev Kotchetkov on the Nuclear Engineering International website here:

 https://www.neimagazine.com/features/featureobninsk-number-one

“Anniversary at Obninsk: The First Commercial Nuclear Power Plant,” by Will Davis on the ANS Nuclear Café website here:

 http://ansnuclearcafe.org/2015/06/24/anniversary-at-obninsk-the-first-commercial-nuclear-power-plant/#sthash.4wTrQueH.vhtfLcPK.dpbs

The AM-1 nuclear power plant design was developed further by NIKIET into the much larger scale RBMK (Reaktor Bolshoy Moshchnosti Kanalnyy, “High Power Channel-type Reactor”) NPPs.  The four reactors at the Chernobyl NPP were RBMK-1000 reactors.

The T-1 Tokamak

Research on plasma confinement is a toroidal magnetic field began in Russia in 1951, leading to the construction of the first experimental toroidal magnetic confinement system, known as a tokamak, at Kurchatov Institute. T-1 began operation in 1958.  

T-1 Tokamak.  Source: https://www.iter.org/sci/BeyondITER

Early operation of T-1 and successive models revealed many problems that limited the plasma confinement capabilities of tokamaks.  Solving these problems led to a better understanding of plasma physics and significant improvements in the design of tokamak machines.  You’ll find a historical overview of early Soviet / Russian work on Tokamaks in a 2010 IAEA paper by V. P. Smirnov, ”Tokamak Foundation in USSR/Russia 1950–1990,” which you can read here:

 https://fire.pppl.gov/nf_50th_5_Smirnov.pdf

The basic tokamak design for magnetic plasma confinement has been widely implemented in many international fusion research machines, winning out over other magnetic confinement concepts, including the Stellarator machine championed in the US by Dr. Lyman Spitzer (see my 30 August 2017 post on Stellarators).  Major international tokamak projects include the Joint European Torus (JET) at the Culham Center for Fusion Energy in Oxfordshire, UK, the Tokamak Fusion Test Reactor (TFTR) at Princeton Plasma Physics Laboratory in the US, the JT-60 at the Japan Atomic Energy Agency’s Naka Fusion Institute, and most recently the International Thermonuclear Experimental Reactor (ITER) being built now at the Saclay Nuclear Center in southern France.


Marine Nuclear Power: 1939 – 2018

Peter Lobner

In 2015, I compiled the first edition of a resource document to support a presentation I made in August 2015 to The Lyncean Group of San Diego (www.lynceans.org) commemorating the 60thanniversary of the world’s first “underway on nuclear power” by USS Nautilus on 17 January 1955.  That presentation to the Lyncean Group, “60 years of Marine Nuclear Power: 1955 –2015,” was my attempt to tell a complex story, starting from the early origins of the US Navy’s interest in marine nuclear propulsion in 1939, resetting the clock on 17 January 1955 with USS Nautilus’ historic first voyage, and then tracing the development and exploitation of marine nuclear power over the next 60 years in a remarkable variety of military and civilian vessels created by eight nations.

Here’s a quick overview of worldwide marine nuclear in 2018.

Source: two charts by author

In July 2018, I finished a complete update of the resource document and changed the title to, “Marine Nuclear Power: 1939 –2018.”  Due to its present size (over 2,100 pages), the resource document now consists of the following parts, all formatted as slide presentations:

  • Part 1: Introduction
  • Part 2A: United States – Submarines
  • Part 2B: United States – Surface Ships
  • Part 3A: Russia – Submarines
  • Part 3B: Russia – Surface Ships & Non-propulsion Marine Nuclear Applications
  • Part 4: Europe & Canada
  • Part 5: China, India, Japan and Other Nations
  • Part 6: Arctic Operations

The original 2015 resource document and this updated set of documents were compiled from unclassified, open sources in the public domain.

I acknowledge the great amount of work done by others who have published material in print or posted information on the internet pertaining to international marine nuclear propulsion programs, naval and civilian nuclear powered vessels, naval weapons systems, and other marine nuclear applications.  My resource document contains a great deal of graphics from many sources.  Throughout the document, I have identified the sources for these graphics.

You can access all parts of Marine Nuclear Power: 1939 – 2018 here:

Marine Nuclear Power 1939 – 2018_Part 1_Introduction

Marine Nuclear Power 1939 – 2018_Part 2A_USA_submarines

Marine Nuclear Power 1939 – 2018_Part 2B_USA_surface ships

Marine Nuclear Power 1939 – 2018_Part 3A_R1_Russia_submarines

Marine Nuclear Power 1939 – 2018_Part 3B_R1_Russia_surface ships & non-propulsion apps

Marine Nuclear Power 1939 – 2018_Part 4_Europe & Canada

Marine Nuclear Power 1939 – 2018_Part 5_China-India-Japan & Others

Marine Nuclear Power 1939 – 2018_Part 6 R1_Arctic marine nuclear

I hope you find this resource document informative, useful, and different from any other single document on this subject.  Below is an outline to help you navigate through the document.

Outline of Marine Nuclear Power:  1939 – 2018.

Part 1: Introduction

  • Quick look:  Then and now
  • State-of-the-art in 1955
  • Marine nuclear propulsion system basics
  • Timeline
    • Timeline highlights
    • Decade-by-decade
  • Effects of nuclear weapons and missile treaties & conventions on the composition and armament of naval fleets
  • Prospects for 2018 – 2030

Part 2A: United States – Submarines

  • Timeline for development of marine nuclear power in the US
  • US current nuclear vessel fleet
  • US naval nuclear infrastructure
  • Use of highly-enriched uranium (HEU) in US naval reactors
  • US submarine reactors and prototype facilities
  • US Navy nuclear-powered submarines
    • Nuclear-powered fast attack submarines (SSN)
      • Submarine-launched torpedoes, anti-submarine missiles & mines
      • Systems to augment submarine operational capabilities
    • Nuclear-powered strategic ballistic missile submarines (SSBN)
      • Submarine-launched strategic ballistic missiles (SLBMs)
    • Nuclear-powered guided missile submarines (SSGN)
      • Cruise missiles and other tactical guided missiles
    • Nuclear-powered special operations submarines

Part 2B: United States – Surface Ships

  • US naval surface ship reactors & prototype facilities
  • US Navy nuclear-powered surface ships
    • Evolution of the US nuclear-powered surface fleet
    • Nuclear-powered guided missile cruisers (CGN)
      • CGN tactical weapons
    • Nuclear-powered aircraft carriers (CVN)
      • Carrier strike group (CSG) & carrier air wing composition
  • Naval nuclear vessel decommissioning and nuclear waste management
  • US civilian marine nuclear vessels and reactors
    • Operational & planned civilian marine vessels and their reactors
    • Other US civilian marine reactor designs
  • Radioisotope Thermoelectric Generator (RTG) marine applications
  • US marine nuclear power current trends

Part 3A: Russia – Submarines

  • The beginning of the Soviet / Russian marine nuclear power program
  • Russian current nuclear vessel fleet.
  • Russian marine nuclear reactor & fuel-cycle infrastructure
  • Russian nuclear vessel design, construction & life-cycle infrastructure
  • Russian naval nuclear infrastructure
  • Russian nuclear-powered submarines
    • Submarine reactors
    • Nuclear-powered fast attack submarines (SSN)
      • Submarine-launched torpedoes & anti-submarine missiles
    • Strategic ballistic missile submarines (SSB & SSBN)
      • Submarine-launched ballistic missiles (SLBM)
    • Cruise missile submarines (SSG & SSGN).
      • Cruise missiles
    • Nuclear-powered special operations subs & strategic torpedoes
    • Other special-purpose nuclear-powered subs
    • Examples of un-built nuclear submarine projects

Part 3B: Russia – Surface Ships & Non-propulsion Marine Nuclear Applications

  • Russian nuclear-powered surface ships
    • Surface ship reactors
    • Nuclear-powered icebreakers
    • Nuclear-powered naval surface ships
      • Nuclear-powered guided missile cruisers
      • Nuclear-powered command ship
      • Nuclear-powered aircraft carrier
      • Nuclear-powered multi-purpose destroyer
  • Russian non-propulsion marine nuclear applications
    • Small reactors for non-propulsion marine nuclear applications
    • Floating nuclear power plants (FNPP)
    • Transportable reactor units (TRU)
    • Arctic seabed applications for marine nuclear power
    • Radioisotope Thermoelectric Generators (RTG)
  • Marine nuclear decommissioning and environmental cleanup
  • Russian marine nuclear power current trends

Part 4: Europe & Canada

  • Nations that operate or have operated nuclear vessels
    • United Kingdom
      • The beginning of the UK marine nuclear power program
      • UK current nuclear vessel fleet
      • UK naval nuclear infrastructure
      • UK naval nuclear reactors
      • UK Royal Navy nuclear-powered submarines
        • Nuclear-powered fast attack submarines (SSN)
          • Submarine-launched tactical weapons
        • Nuclear-powered strategic ballistic missile submarines (SSBN)
          • Submarine-launched ballistic missiles (SLBM)
      • UK disposition of decommissioned nuclear submarines
      • UK nuclear surface ship and marine reactor concepts
      • UK marine nuclear power current trends
    • France
      • The beginning of the French marine nuclear power program
      • French current nuclear vessel fleet
      • French naval nuclear infrastructure
      • French naval nuclear reactors
      • French naval nuclear vessels
        • Nuclear-powered strategic ballistic missile submarines (SNLE)
          • Submarine-launched ballistic missiles (MSBS)
        • Nuclear-powered fast attack submarines (SNA)
          • Submarine-launched tactical weapons
        • Nuclear-powered aircraft carrier
      • French disposition of decommissioned nuclear submarines
      • French non-propulsion marine reactor applications
      • French marine nuclear power current trends
    • Germany
  • Other nations with an interest in marine nuclear power technology
    • Italy
    • Sweden
    • Netherlands
    • Canada

Part 5: China, India, Japan and Other Nations

  • Nations that have operated nuclear vessels
    • China
      • The beginning of China’s marine nuclear power program
      • China’s current nuclear vessel fleet
      • China’s naval nuclear infrastructure
      • China’s nuclear vessels
        • Nuclear-powered fast attack submarines (SSNs)
          • Submarine-launched tactical weapons
        • Nuclear-powered strategic ballistic missile subs (SSBNs)
          • Submarine-launched ballistic missiles (SLBMs)
        • Floating nuclear power stations
        • Nuclear-powered surface ships
      • China’s decommissioned nuclear submarine status
      • China’s marine nuclear power current trends
    • India
      • The beginning of India’s marine nuclear power program
      • India’s current nuclear vessel fleet
      • India’s naval nuclear infrastructure
      • India’s nuclear-powered submarines
        • Nuclear-powered fast attack submarines (SSNs)
          • Submarine-launched tactical weapons
        • Nuclear-powered strategic ballistic missile submarines (SSBNs)
          • Submarine-launched ballistic missiles (SLBM).
      • India’s marine nuclear power current trends
    • Japan
  • Other nations with an interest in marine nuclear power technology
    • Brazil
    • North Korea
    • Pakistan
    • Iran
    • Israel
    • Australia

Part 6: Arctic Operations

  • Rationale for marine nuclear power in the Arctic
  • Orientation to the Arctic region
  • US Arctic policy
  • Dream of the Arctic submarine
  • US marine nuclear Arctic operations
  • UK marine nuclear Arctic operations
  • Canada marine nuclear ambitions
  • Russian marine nuclear Arctic operations
    • Russian non-propulsion marine nuclear Arctic applications
  • China’s marine nuclear ambitions
  • Current trends in marine nuclear Arctic operations

Periodic updates:

  • Parts 3A and 3B, Revision 1, were posted in October 2018
  • Part 6, Revision 1, was posted in February 2019

You Need to Know About Russia’s Main Directorate of Deep-Sea Research (GUGI)

Peter Lobner

The Main Directorate of Deep-Sea Research, also known as GUGI and Military Unit 40056, is an organizational structure within the Russian Ministry  of Defense that is separate from the Russian Navy.  The Head of GUGI is Vice-Admiral Aleksei Burilichev, Hero of Russia.

Source. Adapted from Ministry of Defense of the Russian Federation, http://eng.mil.ru/en/index.htm

Vice-Admiral Aleksei Burilichev at the commissioning of GUGI oceanographic research vessel Yantar. Source: http://eng.mil.ru/

GUGI is responsible for fielding specialized submarines, oceanographic research ships, undersea drones and autonomous vehicles, sensor systems, and other undersea systems.   Today, GUGI operates the world’s largest fleet of covert manned deep-sea vessels. In mid-2018, that fleet consisted of eight very specialized nuclear-powered submarines.

There are six nuclear-powered, deep-diving, small submarines (“nuclear deep-sea stations”), each of which is capable of working at great depth (thousands of meters) for long periods of time.  These subs are believed to have diver lockout facilities to deploy divers at shallower depths.

  • One Project 1851 / 18510 Nelma (aka X-Ray) sub delivered in 1986; Length: 44 m (144.4 ft.); displacement about 529 tons submerged. This is the first and smallest of the Russian special operations nuclear-powered submarines.
  • Two Project 18511 Halibut (aka Paltus) subs delivered between 1994 – 95; Length: 55 m (180.4 ft.); displacement about 730 tons submerged.
  • Three Project 1910 Kashalot (aka Uniform) subs delivered between 1986 – 1991, but only two are operational in 2018; Length: 69 m (226.4 ft.); displacement about 1,580 tons submerged.
  • One Project 09851 Losharik (aka NORSUB-5) sub delivered in about 2003; Length: 74 m (242.8 ft.); displacement about 2,100 tons submerged.

The trend clearly is toward larger, and certainly more capable deep diving special operations submarines.  The larger subs have a crew complement of 25 – 35.

Kashalot notional cross-section diagram. Source: adapted from militaryrussia.ru

Kashalot notional diagram showing deployed positioning thrusters, landing legs and tools for working on the bottom. Source: http://nvs.rpf.ru/nvs/forum

The Russian small special operations subs may have been created in response to the U.S. Navy’s NR-1 small, deep-diving nuclear-powered submarine, which entered service in 1969.  NR-1 had a length of 45 meters (147.7 ft.) and a displacement of about 400 tons submerged, making it roughly comparable to the Project 1851 / 18510 Nelma . NR-1 was retired in 2008, leaving the U.S. with no counterpart to the Russian fleet of small, nuclear-powered special operations subs.

GUGI operates two nuclear-powered “motherships” (PLA carriers) that can transport one of the smaller nuclear deep-sea stations to a distant site and provide support throughout the mission. The current two motherships started life as Delta III and Delta IV strategic ballistic missile submarines (SSBNs).  The original SSBN missile tubes were removed and the hulls were lengthened to create large midship special mission compartments with a docking facility on the bottom of the hull for one of the small, deep-diving submarines.  These motherships probably have a test depth of about 250 to 300 meters (820 to 984 feet).  They are believed to have diver lockout facilities for deploying divers.

General arrangement of a Russian mothership carrying a small special operations submarine.  Source:  http://gentleseas.blogspot.com/2015/08/russias-own-jimmy-carter-special-ops.html

Delta-IV mothership carrying Losharik.  Source: GlobalSecurity.org

The motherships also are believed capable of deploying and retrieving a variety of  autonomous underwater vehicles (AUVs), including the relatively large Harpsichord: Length: 6.5 m (21.3 ft.); Diameter 1 m (3.2 ft.); Weight: 3,700 kg (8,157 pounds).

Harpsichord-2R-PM. Source: http://vpk-news.ru/articles/30962

The following graphic shows a mothership carrying a small special operations sub  while operating with a Harpsichord AUV.

                       Source: https://russianmilitaryanalysis.wordpress.com/tag/9m730/

These nuclear submarines are operated by the 29th Special Submarine Squadron, which is based along with other GUGI vessels at Olenya Bay, in the Kola Peninsula on the coast of the Barents Sea.

Olenya Bay is near Murmansk.  Source: Google Maps

Russian naval facilities near Murmansk.  Source: https://commons.wikimedia.org

Mothership BS-136 Orenburg at Oleyna Bay.  Source: Source: http://www.air-defense.net/

The GUGI fleet provides deep ocean and Arctic operating capabilities that greatly exceed those of any other nation.  Potential missions include:

  • Conducting subsea surveys, mapping and sampling (i.e., to help validate Russia’s extended continental shelf claims in the Arctic; to map potential future targets such as seafloor cables)
  • Placing and/or retrieving items on the sea floor (i.e., retrieving military hardware, placing subsea power sources, power distribution systems and sonar arrays)
  • Maintaining military subsea equipment and systems
  • Conducting covert surveillance
  • Developing an operational capability to deploy the Poseidon strategic nuclear torpedo.
  • In time of war, attacking the subsea infrastructure of other nations in the open ocean or in the Arctic (i.e., cutting subsea internet cables, power cables or oil / gas pipelines)

Analysts at the firm Policy Exchange reported that the world’s undersea cable network comprises about 213 independent cable systems and 545,018 miles (877,121 km) of fiber-optic cable.  These undersea cable networks carry an estimated 97% of global communications and $10 trillion in daily financial transactions are transmitted by cables under the ocean.

Since about 2015, NATO has observed Russian vessels stepping up activities around undersea data cables in the North Atlantic. None are known to have been tapped or cut.  Selective attacks on this cable infrastructure could electronically isolate and severely damage the economy of individual countries or regions.  You’ll find a more detailed assessment on this matter in the 15 December 2017 BBC article, “Russia a ‘risk’ to undersea cables, Defence chief warns.”

http://www.bbc.com/news/uk-42362500

GUGI also is responsible for the development of the Poseidon (formerly known as Status-6 / Kanyon) strategic nuclear torpedo and the associated “carrier” submarines.

Poseidon, which was first revealed on Russian TV in November 2015,  is a large, nuclear-powered, autonomous underwater vehicle (AUV) that functionally is a giant, long-range torpedo.

 The Russian TV “reveal” of the Oceanic Multipurpose System Status-6 November 2015. Source: https://russianmilitaryanalysis.wordpress.com/tag/9m730/

It is capable of delivering a very large nuclear warhead (perhaps up to 100 MT) underwater to the immediate proximity of an enemy’s key economic and military facilities in coastal areas.  It is a weapon of unprecedented destructive power and it is not subject to any existing nuclear arms limitation treaties. However, its development would give Russia leverage in future nuclear arms limitation talks.

The immense physical size of the Poseidon strategic nuclear torpedo is evident in the size comparison chart below.

Source: http://www.hisutton.com/

The Bulava is the Russian submarine launched ballistic missile (SLBM) carried on Russia’s modern Borei-class SSBNs.  The UGST torpedo is representative of a typical torpedo launched from a 533 mm (21 inch) torpedo tube, which is found on the majority of submarines in the world.  An experimental submarine, the B-90 Sarov, appears to be the current testbed for the Poseidon strategic torpedo.  Russia is building other special submarines to carry several Poseidon strategic torpedoes.  One is believed to be the giant, highly modified Oscar II submarine K-139 Belgorod, which also will serve as a mothership for a small, special operations nuclear sub.  The other is the smaller Project 09851 submarine Khabarovsk, which appears to be purpose-built for carrying the Poseidon.

For more information on GUGI, Russian special operations submarines and other covert underwater projects, refer to the Covert Shores website created by naval analyst H. I. Sutton, which you’ll find at the following link:

http://www.hisutton.com/Analysis%20-%20Russian%20Status-6%20aka%20KANYON%20nuclear%20deterrence%20and%20Pr%2009851%20submarine.html

Manufacturing the Reactor Vessel for an RITM-200 PWR for Russia’s new LK-60 Class of Polar Icebreakers

Peter Lobner

The first ship in the new LK-60 class of nuclear powered icebreakers, named Arktika, was launched on 16 June 2016 at the Baltic Shipyard in St. Petersburg, Russia. LK-60 class icebreakers are powered by two RITM-200 integral pressurized water reactors (PWR), each rated at 175 MWt, and together delivering 60 MW (80,460 hp) to an electric motor propulsion system driving three shafts.

LK-60 class icebreakers are the most powerful icebreakers in the world. Contracts for two additional LK-60 icebreakers were placed in May 2014. They are scheduled for delivery in 2020 (Sibr) & 2021 (Ural).

The general arrangement of the nuclear reactors in these ships is shown in the following two diagrams.

Two RITM-200 reactors installed on an LK-60 class icebreaker. Source: Atomenergomash

The basic design of the RITM-200 integral primary system is shown in the following diagram. The reactor and steam generators are in the same vessel. The four primary pumps are connected directly to the reactor vessel, creating a very compact primary system unit.

The two reactor vessels were installed in Arktika in September 2016, which is scheduled to be service-ready in mid-2019, and will operate from the Atomflot icebreaker port in Murmansk. Manufacturing of the reactor vessels for the second LK-60 icebreaker, Sibr, is in progress.

Above: Second integral reactor vessel for Arktika, with the primary pump housings installed. Source: Rosatom

Below: Integral reactor vessel at an earlier stage of manufacturing for Sibr.  Source: Atomenergomash

Below: Complete RITM-200 integral reactor vessel. Source: Atomenergomash

You can watch an Atomenergomash video (in Russian) showing how the RITM-200 reactor vessel is manufactured at the following link:

The U.S. has no nuclear powered icebreakers and only one, older polar-class icebreaker. See my 3 September 2015, “The Sad State of Affairs of the U.S. Icebreaking Fleet and Implications for Future U.S. Arctic Operations,” for more information on the U.S. icebreaker fleet.

The Vision for Manned Exploration and Colonization of Mars is Alive Again

Peter Lobner

On 25 May 1961, President John F. Kennedy made an important speech to a joint session of Congress in which he stated:

“I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the moon and returning him safely to the Earth.”

This was a very bold statement considering the state-of-the-art of U.S. aerospace technology in mid-1961. Yuri Gagarin became the first man to orbit the Earth on 12 April 1961 in a Soviet Vostok spacecraft and Alan Shepard completed the first Project Mercury suborbital flight on 5 May 1961. No American had yet flown in orbit. It wasn’t until 20 February 1962 that the first Project Mercury capsule flew into Earth orbit with astronaut John Glenn. The Soviets had hit the Moon with Luna 2 and returned photos from the backside of the moon with Luna 3. The U.S had only made one distant lunar flyby with the tiny Pioneer 4 spacecraft. The Apollo manned lunar program was underway, but still in the concept definition phase. The first U.S. heavy booster rocket designed to support the Apollo program, the Saturn 1, didn’t fly until 27 October 1961.

President Kennedy concluded this part of his 25 May 1961 speech with the following admonition:

“This decision (to proceed with the manned lunar program) demands a major national commitment of scientific and technical manpower, materiel and facilities, and the possibility of their diversion from other important activities where they are already thinly spread. It means a degree of dedication, organization and discipline, which have not always characterized our research and development efforts. It means we cannot afford undue work stoppages, inflated costs of material or talent, wasteful interagency rivalries, or a high turnover of key personnel.

New objectives and new money cannot solve these problems. They could in fact, aggravate them further–unless every scientist, every engineer, every serviceman, every technician, contractor, and civil servant gives his personal pledge that this nation will move forward, with the full speed of freedom, in the exciting adventure of space.”

This was the spirit that lead to the great success of the Apollo program, which landed the first men on the Moon, astronauts Neil Armstrong and Ed Aldrin, on 20 July 1969; a little more than 8 years after President Kennedy’s speech.

NASA’s plans for manned Mars exploration

By 1964, exciting concepts for manned Mars exploration vehicles were being developed under National Aeronautics and Space Administration (NASA) contract by several firms. One example is a Mars lander design shown below from Aeronutronic (then a division of Philco Corp). A Mars Excursion Module (MEM) would descend to the surface of Mars from a larger Mars Mission Module (MMM) that remained in orbit. The MEM was designed for landing a crew of three on Mars, spending 40 days on the Martian surface, and then returning the crew back to Mars orbit and rendezvousing with the MMM for the journey back to Earth.

1963 Aeronutronic Mars lander conceptSource: NASA / Aviation Week 24Feb64

This and other concepts developed in the 1960s are described in detail in Chapters 3 – 5 of NASA’s Monograph in Aerospace History #21, “Humans to Mars – Fifty Years of Mission Planning, 1950 – 2000,” which you can download at the following link:

http://www.nss.org/settlement/mars/2001-HumansToMars-FiftyYearsOfMissionPlanning.pdf

In the 1960’s the U.S. nuclear thermal rocket development program led to the development of the very promising NERVA nuclear engine for use in an upper stage or an interplanetary spacecraft. NASA and the Space Nuclear Propulsion Office (SNPO) felt that tests had “confirmed that a nuclear rocket engine was suitable for space flight application.”

In 1969, Marshall Space Flight Director Wernher von Braun propose sending 12 men to Mars aboard two rockets, each propelled by three NERVA engines. This spacecraft would have measured 270 feet long and 100 feet wide across the three nuclear engine modules, with a mass of 800 tons, including 600 tons of liquid hydrogen propellant for the NERVA engines. The two outboard nuclear engine modules only would be used to inject the spacecraft onto its trans-Mars trajectory, after which they would separate from the spacecraft. The central nuclear engine module would continue with the manned spacecraft and be used to enter and leave Mars orbit and enter Earth orbit at the end of the mission. The mission would launch in November 1981 and land on Mars in August 1982.

Marshall 1969 NERVA mars missionNERVA-powered Mars spacecraft. Source: NASA / Monograph #21

NASA’s momentum for conducting a manned Mars mission by the 1980s was short-lived. Development of the super heavy lift Nova booster, which was intended to place about 250 tons to low Earth orbit (LEO), was never funded. Congress reduced NASA’s funding in the FY-69 budget, resulting in NASA ending production of the Saturn 5 heavy-lift booster rocket (about 100 tons to LEO) and cancelling Apollo missions after Apollo 17. This left NASA without the heavy-lift booster rocket needed to carry NERVA and/or assembled interplanetary spacecraft into orbit.

NASA persevered with chemical rocket powered Mars mission concepts until 1971. The final NASA concept vehicle from that era, looking much like von Braun’s 1969 nuclear-powered spacecraft, is shown below.

NASA 1971 mars concept

Source: NASA / Monograph #21

The 24-foot diameter modules would have required six Shuttle-derived launch vehicles (essentially the large center tank and the strap-in solid boosters, without the Space Shuttle itself) to deliver the various modules for assembly in orbit.

While no longer a factor in Mars mission planning, the nuclear rocket program was canceled in 1972. You can read a history of the U.S. nuclear thermal rocket program at the following links:

http://www.lanl.gov/science/NSS/issue1_2011/story4full.shtml

and,

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19910017902.pdf

NASA budget realities in subsequent years, dictated largely by the cost of Space Shuttle and International Space Station development and operation, reduced NASA’s manned Mars efforts to a series of design studies, as described in the Monograph #21.

Science Applications International Corporation (SAIC) conducted manned Mars mission studies for NASA in 1984 and 1987. The latter mission design study was conducted in collaboration with astronaut Sally Ride’s August 1987 report, Leadership and America’s Future in Space. You can read this report at the following link.

http://history.nasa.gov/riderep/cover.htm

Details on the 1987 SAIC mission study are included in Chapter 8 of the Monograph #21. SAIC’s mission concept employed two chemically-fueled Mars spacecraft in “split/sprint” roles. An automated cargo-carrying spacecraft would be first to depart Earth. It would fly an energy-saving trajectory and enter Mars orbit carrying the fuel needed by the future manned spacecraft for its return to Earth. After the cargo spacecraft was in Mars orbit, the manned spacecraft would be launched on a faster “sprint” trajectory, taking about six months to get to Mars. With one month allocated for exploration of the Martian surface, total mission time would be on the order of 12 – 14 months.

President Obama’s FY-11 budget redirected NASA’s focus away from manned missions to the Moon and Mars. The result is that there are no current programs with near-term goals to establish a continuous U.S. presence on the Moon or conduct the first manned mission to Mars. Instead, NASA is engaged in developing hardware that will be used initially for a relatively near-Earth (but further out than astronauts have gone before) “asteroid re-direct mission.” NASA’s current vision for getting to Mars is summarized below.

  • In the 2020s, NASA will send astronauts on a year-long mission into (relatively near-Earth) deep space, verifying spacecraft habitation and testing our readiness for a Mars mission.
  • In the 2030s, NASA will send astronauts first to low-Mars orbit. This phase will test the entry, descent and landing techniques needed to get to the Martian surface and study what’s needed for in-situ resource utilization.
  • Eventually, NASA will land humans on Mars.

You can read NASA’s Journey to Mars Overview at the following link:

https://www.nasa.gov/content/journey-to-mars-overview

NASA’s current plans for getting to Mars don’t really sound like much of a plan to me. Think back to President Kennedy’s speech that outlined the national commitment needed to accomplish a lunar landing within the decade of the 1960s. There is no real sense of timeliness in NASA plans for getting to Mars.

Thinking back to the title of NASA’s Monograph #21, “Humans to Mars – Fifty Years of Mission Planning, 1950 – 2000,” I’d say that NASA is quite good at manned Mars mission planning, but woefully short on execution. I recognize that NASA’s ability to execute anything is driven by its budget. However, in 1969, Wernher von Braun thought the U.S. was about 12 years from being able to launch a nuclear-powered manned Mars mission in 1981. Now it seems we’re almost 20 years away, with no real concept for the spacecraft that will get our astronauts there and back.

Commercial plans for manned Mars exploration

Fortunately, the U.S. commercial aerospace sector seems more committed to conducting manned Mars missions than NASA. The leading U.S. contenders are Bigelow Aerospace and SpaceX. Let’s look at their plans.

Bigelow Aerospace

Bigelow is developing expandable structures that can be used to house various types of occupied spaces on manned Earth orbital platforms or on spacecraft destined for lunar orbital missions or long interplanetary missions. Versions of these expandable structures also can be used for habitats on the surface of the Moon, Mars, or elsewhere.

The first operational use of this type of expandable structure in space occurred on 26 May 2016, when the BEAM (Bigelow Expandable Activity Module) was deployed to its full size on the International Space Station (ISS). BEAM was expanded by air pressure from the ISS.

Bigelow BEAMBEAM installed in the ISS. Source: Bigelow Aerospace

You can view a NASA time-lapse video of BEAM deployment at the following link:

https://www.youtube.com/watch?v=QxzCCrj5ssE

A large, complex space vehicle can be built with a combination of relatively conventional structures and Bigelow inflatable modules, as shown in the following concept drawing.

Bigelow spacecraft conceptSource: Bigelow Aerospace

A 2011 NASA concept named Nautilus-X, also making extensive use of inflatable structures, is shown in the following concept drawing. Nautilus is an acronym for Non-Atmospheric Universal Transport Intended for Lengthy United States Exploration.

NASA Nautilus-X-space-exploration-vehicle-concept-1

Source: NASA / NASA Technology Applications Assessment Team

SpaceX

SpaceX announced that it plans to send its first Red Dragon capsule to Mars in 2018 to demonstrate the ability to land heavy loads using a combination of aero braking with the capsule’s ablative heat shield and propulsive braking using rocket engines for the final phase of landing.

Red Dragon landing on MarsSource: SpaceX

More details on the Red Dragon spacecraft are in a 2012 paper by Karcs, J. et al., entitled, “Red Dragon: Low-cost Access to the Surface of Mars Using Commercial Capabilities,” which you’ll find at the following link:

https://www.nas.nasa.gov/assets/pdf/staff/Aftosmis_M_RED_DRAGON_Low-Cost_Access_to_the_Surface_of_Mars_Using_Commercial_Capabilities.pdf

NASA is collaborating with SpaceX to gain experience with this landing technique, which NASA expects to employ in its own future Mars missions.

On 27 September 2016, SpaceX CEO Elon Musk unveiled his grand vision for colonizing Mars at the 67th International Astronautical Congress in Guadalajara, Mexico. You’ll find an excellent summary in the 29 September 2016 article by Dave Mosher entitled, “Elon Musk’s complete, sweeping vision on colonizing Mars to save humanity,” which you can read on the Business Insider website at the following link:

http://www.businessinsider.com/elon-musk-mars-speech-transcript-2016-9

The system architecture for the SpaceX colonizing flights is shown in the following diagram. Significant features include:

  • 100 passengers on a one-way trip to Mars
  • Booster and spacecraft are reusable
  • No spacecraft assembly in orbit required.
  • The manned interplanetary vehicle is fueled with methane in Earth orbit from a tanker spacecraft.
  • The entire manned interplanetary vehicle lands on Mars. There is no part of the vehicle left orbiting Mars.
  • The 100 passengers disembark to colonize Mars
  • Methane fuel for the return voyage to Earth is manufactured on the surface of Mars.
  • The spacecraft returns to Earth for reuse on another mission.
  • Price per person for Mars colonists could be in the $100,000 to $200,000 range.

The Mars launcher for this mission would have a gross lift-off mass of 10,500 tons; 3.5 times the mass of NASA’s Saturn 5 booster for the Apollo Moon landing program.

SpaceX colonist architectureSource: SpaceX

 Terraforming Mars

Colonizing Mars will require terraforming to transform the planet so it can sustain human life. Terraforming the hostile environment of another planet has never been done before. While there are theories about how to accomplish Martian terraforming, there currently is no clear roadmap. However, there is a new board game named, “Terraforming Mars,” that will test your skills at using limited resources wisely to terraform Mars.

Nate Anderson provides a detailed introduction to this board game in his 1 October 2016 article entitled, “Terraforming Mars review: Turn the ‘Red Planet’ green with this amazing board game,” which you can read at the following link:

http://arstechnica.com/gaming/2016/10/terraforming-mars-review/?utm_source=howtogeek&utm_medium=email&utm_campaign=newsletter

71RW5ZM0bBL._SL1000_Source: Stronghold GamesTerraforming Mars gameboardSource: Nate Anderson / arsTECHNICA

Nate Anderson described the game as follows:

“In Terraforming Mars, you play one of several competing corporations seeking to terraform the Red Planet into a livable—indeed, hospitable—place filled with cows, dogs, fish, lichen, bacteria, grasslands, atmosphere, and oceans. That goal is achieved when three things happen: atmospheric oxygen rises to 14 percent, planetary temperature rises to 8°C, and all nine of the game’s ocean tiles are placed.

Real science rests behind each of these numbers. The ocean tiles each represent one percent coverage of the Martian surface; once nine percent of the planet is covered with water, Mars should develop its own sustainable hydrologic cycle. An atmosphere of 14 percent oxygen is breathable by humans (though it feels like a 3,000 m elevation on Earth). And at 8°C, water will remain liquid in the Martian equatorial zone.

Once all three milestones have been achieved, Mars has been successfully terraformed, the game ends, and scores are calculated.”

The players are competing corporations, each with limited resources. The game play evolves based how each player (corporation) chooses to spend their resources to build their terraforming engines (constrained by some rules of precedence), and the opportunities dealt to them in each round.

You can buy the game Terraforming Mars on Amazon.

So, before you sign up with SpaceX to become a Martian colonist, practice your skills at terraforming Mars. You’ll be in high demand as an expert terraformer when you get to Mars on a SpaceX colonist ship in the late 2020s.

60 Year Anniversary of “Underway on Nuclear Power”

Peter Lobner

Updated 10 January 2020

60 years ago, on 17 Jan 1955,  CDR Eugene Wilkinson, the first CO of the USS Nautilus, SSN-571, ordered the following message sent as his nuclear-powered sub got underway for the first time in New London, CT.

Wilkinson_Message  Source: U.S. NavyWILKINSON-obit-web-articleLarge CDR Eugene Wilkinson and Nautilus.  Source: U.S. Navy

You’ll find an interesting, short backstory to this message at the following link:

 
Wilkinson retired from the Navy as a Vice Admiral in 1974, died in 2013, and is buried in Fort Rosecrans National Cemetery in San Diego, CA.
 

There’s a short history of the early Navy nuclear power program and Nautilus at the following link: 

 
 nautilus_23 Admiral Rickover. Source: U.S. Navy
 

We owe a debt of gratitude to Admiral Hyman G. Rickover for the success of the Naval Nuclear Power Program, which is quite visible here in San Diego, with nuclear-powered aircraft carriers based at North Island and submarines operating from Ballast Point in Point Loma.

10 January 2020 update:
 

In July 2018, I completed a set of eight resource documents collectively titled, “Marine Nuclear Power: 1939 – 2018,”  and comprising over 2,100 pages formatted as slide presentations.   The eight parts are:

  • Part 1: Introduction
  • Part 2A: United States – Submarines
  • Part 2B: United States – Surface Ships
  • Part 3A: Russia – Submarines
  • Part 3B: Russia – Surface Ships & Non-propulsion Marine Nuclear Applications
  • Part 4: Europe & Canada
  • Part 5: China, India, Japan and Other Nations
  • Part 6: Arctic Operations

All of these can be accessed through my 25 July 2018 “Marine Nuclear Power 1939 – 2018” post at the following link: 

https://lynceans.org/all-posts/marine-nuclear-power-1939-2018/