Orbital Marine Power (https://orbitalmarine.com) is developing a large, moored tidal turbine, the O2, which they claim is the most powerful tidal turbine in the world. The O2 soon will be deployed at sea off the Orkney Islands, northeast of Scotland.
Key features of the O2 tidal turbine are:
74 meter (243 ft) tubular steel hull with fore and aft mooring connections.
Hydraulically-actuated steel legs extending from the hull support the generator nacelles and rotors that are deployed underwater after the hull has been moored using a four-point mooring system.
Two 20 meter (65.6 ft) diameter, 2-bladed rotors give the O2 more than 600 m2 (6,458 ft2) of swept area to capture flowing tidal energy.
Blade pitch control enables bi-directional operation of the turbines with the hull in a fixed moored position (the hull doesn’t swing with the tide).
Each rotor drives a 1 MWe generator housed in the nacelle.
Power is delivered to shore by a submarine cable.
Here are three short videos that will give you a quick introduction to this remarkable machine:
“Orbital O2 2MW Tidal Turbine – World’s Most Powerful Tidal Turbine” (1:43 minutes), 2018 animation showing how the O2 design and how it will operate: https://www.youtube.com/watch?v=9hN3dBpPu8Q
If the O2 demonstration proves to be successful, Orbital Marine Power plans to develop and deploy larger tidal turbines in the future.
So, what does the O2 tidal turbine have in common with an airship? The Aeromodeller II airship design developed by Belgian engineer Lieven Standaert implements an airborne mooring as a means to generate power using two wind turbines while remaining aloft.
Both the O2 tidal turbine and the Aeromodeller II airship are buoyant vehicles in their respective media (water and air, respectively) and both are designed to extract power from that medium while moored (or tethered). Important differences are that the O2 tidal turbine is permanently moored and supplies power to users on land. The Aeromodeller II drops its anchor periodically to recharge its own power system while tethered and then raises its anchor to continue its journey. You’ll find more information on the Aeromodeller II airship in my separate article here: https://lynceans.org/wp-content/uploads/2019/08/Aeromodeller-2-converted1.pdf
“Modern Airships” is a three-part document that contains an overview of modern airship technology in Part 1 and links in Parts 1, 2 and 3 to more than 285 individual articles on historic and advanced airship designs. This is Part 3. Here are the links to the other two parts:
To help you navigate the large volume of material in these three documents, please refer to following indexes. The first index simply lists the article titles in alphabetic order within each Part.
Parts 1 & 2 address similar types of airships and unpowered aerostats. The following airship type index enables you to see all of the airships and aerostats addressed in Parts 1 & 2, grouped by type, with direct links to the relevant articles.
The airships described in Part 3 are relatively exotic concepts in comparison to the more utilitarian and heavy-lift airships that dominate Parts 1 and 2. As shown in the following index, the airships in Part 3 are organized by function rather than airship type, which sometimes is difficult to determine with the information available.
Modern Airships – Part 3 begins with a graphic table identifying the airship concepts addressed in this part, and concludes by providing links to more than 50 individual articles on these airship concepts. A downloadable pdf copy of Part 3 is available here:
If you have any comments or wish to identify errors in these documents, please send me an e-mail to: [email protected].
I hope you’ll find the Modern Airships series to be informative, useful, and different from any other single document on this subject.
Best regards,
Peter Lobner
6 November 2024
Record of revisions to Part 3
Original Modern Airships post, 26 August 2016: addressed 14 airships in a single post.
Expanded the Modern Airships post and split it into three parts, 18 August 2019: Part 3 included 32 linked articles.
Part 3, Revision 1, 21 December 2020: Added 1 new article on Walden Aerospace. Part 3 now had 33 articles
Part 3, Revision 2, 8 February 2022: Added 14 new articles, moved over and updated the Halo article from Part 1 and updated 12 of the original articles. A detailed summary of changes incorporated in Part 3, Rev. 2 is listed here. Part 3 now had 48 articles.
Part 3, Revision 3, 18 March 2022: Added 1 new article, reorganized the graphic table and updated 22 of the original articles. With this revision, all Part 3 linked articles have been updated in February or March 2022. A detailed summary of changes incorporated in Part 3, Rev. 3 is listed here. Part 3 now has 49 articles.
Part 3, Revision 4, 18 March 2024: Added 3 new articles and updated 1 of the original articles. Updated graphics tables. Added indexes for Parts 1, 2 & 3. A detailed summary of changes incorporated in Part 3, Rev. 4 is listed here. Part 3 now has 52 articles.
Part 3, changes since Rev. 4 (18 March 2024)
New articles:
Lazzarini Design Studio – Colossea
Leoni Design Workshop – Air Cube
Updated articles:
None yet
2. Graphic tables
The airship design concepts reviewed in Modern Airships – Part 3 are summarized in the following set of graphic tables. I’ve grouped these airship concepts based on their applications rather than on their design / type (as in Parts 1 and 2) because those details sometimes are difficult to determine when few graphics and limited descriptions are available.
Cargo & multi-purpose airships
Mass transportation airships
Flying hotel airships
Touring airships
Flying yacht airships
Autonomous special purpose airships
Personal airships
Thermal (hot air) airships
Biomimetic airships
Rocket / airship (Rockoon) hybrids
Combat airships
Within each category, each page of the table is titled with the name of the category and is numbered (P3.x), where P3 = Modern Airships – Part 3 and x = the sequential number of the page in that category. For example, “Flying hotel airships (P3.2)” is the page title for the second page in the “Flying hotel airships” category in Part 3. Within each category, the airships are listed in an approximate chronological order.
Except for a few sub-scale models, none of the airship concepts in Part 3 have flown. A few of these airships look good as concepts, but may be impossible to build. Nonetheless, all of these relatively exotic concepts point toward an airship future that will benefit from the great creativity expressed by these designers.
Links to the individual Part 3 articles on these airships are provided in Section 3.
3. Links to the individual articles
The following links will take you to the individual articles.
Note that a few of these articles address more than one airship design concept from the same designer and these airship concepts may be in different categories (i.e., Avalon Airships, Bauhaus Luftfahrt, Walden Aerospace). Each design concept is listed separately in the above graphic tables and in the following index. The links listed below will take you to the correct article.